
Haptic Rendering and Psychophysical
Evaluation of a Virtual

Three-Dimensional Helical Spring

Vinithra Varadharajan
Master’s Thesis Report

CMU-RI-TR-07-21

May 24th, 2007

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

c© Carnegie Mellon University

Abstract

This Masters thesis presents the development of a new deformable object for haptic in-
teraction in the form of a 3D helical spring. This haptic and visual simulation is based
on an analytical model of a quasistatic spring. The model provides a real-time com-
putationally efficient method for rendering a deformable spring using a magnetic levi-
tation haptic device. The solution includes equations for reaction forces and resisting
moments experienced during compression, elongation, shear and tilting of the spring.
The system is used to conduct psychophysical experiments that quantify human per-
ception and discriminability of spring stiffness magnitude with and without vision and
demonstrates the effectiveness of the device and the simulation for rendering springs.
Experimental results show that spring magnitude perception follows a linear trend, and
presence of vision enables better discrimination between different spring stiffnesses.

Acknowledgments

I would first like to thank my adviser, Prof. Ralph Hollis, for giving me the opportunity
to work in the field of haptics, and for his guidance and support. I have benefited
from his wealth of knowledge and have become a better researcher. I have also grown
professionally under his observation. A huge thank you to Dr. Bertram Unger for the
many hours he has spent discussing and refining my ideas, always being available to
answer my questions, for imparting me with knowledge on every topic from haptics to
medicine to world cultures, and for being a great friend. Thank you to Prof. Roberta
Klatzky for her pschophysical expertise and to Prof. Robert Swendsen for lending his
assistance in extending the spring model. Thanks to my other committee members
Prof. Nancy Pollard and Clark Haynes. Thanks to Dr. Ben Brown for his assistance
with the spring model.

I would also like to thank my friends at the Robotics Institute for making my grad-
uate school experience fun and memorable. In particular, I would like to thank Ayorkor
Mills-Tettey for always being there for me. Thanks also to my other friends around the
world for their support and friendship. Finally, I would like to thank my parents and
my sister for their undying support and motivation, and for always believing in me. My
every achievement is the product of their love and encouragement.

This work was partially supported by National Science Foundation grant IIS-0413085
and by a Google Anita Borg scholarship.

1

Contents
1 Introduction 3

2 Magnetic Levitation Haptic Device 4

3 Rendering a 3D Helical Spring 4
3.1 Derivation of Spring Equations . 5

3.1.1 Compression . 11
3.1.2 Elongation . 14

3.2 Haptic Rendering . 17
3.3 Visual Rendering . 21
3.4 Calibration along the Vertical Axis 23

4 PSYCHOPHYSICAL EXPERIMENTS 25
4.1 Spring Stiffness Magnitude Estimation 25
4.2 Just Noticeable Difference of Spring Stiffness 26
4.3 Results . 26

4.3.1 Spring Stiffness Magnitude Estimation 26
4.3.2 Just Noticeable Difference of Spring Stiffness 27

5 Conclusions 28

6 Key Contributions 29

7 Future Work 29

A Source Code for Haptic Rendering of Spring 32

B Source Code for Visual Rendering of Spring 38

2

1 Introduction
There has been substantial interest in the virtual environment community in the haptic
and visual modeling of deformable objects [6], [18]. One method of rendering elastic
behavior in these models is by using a network of “Mass-Spring” elements [7]. Such
models over-simplify the behavior of a deformable object. Another popular method is
that of Finite Element Analysis (FEA) [3]. While FEA accurately captures continuous
and nonlinear deformable behavior, it is also computationally intensive and unsuitable
for real-time simulations. James and Pai have suggested pre-calculation methods [10],
[11] to make FEA models computationally efficient. Such pre-calculated models have
been used by Barbic̆ and James [2] to identify the principal components of the defor-
mation model and combine them appropriately to render a range of deformations and
Mahvash and Hayward have used them in combination with interpolation techniques
[15]. While these methods render real-time deformations, they compromise on accu-
racy and fidelity of the haptic interaction. Also, the values of the parameters are spec-
ified during pre-calculation, making it difficult to change the model during run-time.
In this report, a method of rendering real-time, realistic and accurate haptic and visual
3D helical springs based on a quasistatic analytical model is presented. Equations that
define the behavior of the spring during compression, elongation, shear and tilting, and
that predict the buckling point are provided. Such a simulation is an initial step in the
use of a magnetic levitation haptic device (MLHD) to render deformable objects. The
simulation allows parameterization of the spring structure (e.g., length; coil diameter),
material (e.g., Young’s modulus) and inherent qualities (e.g., compression rigidity con-
stant). Users can feel the results of parametric variations using free exploration and
these variations are mapped into perceptible properties. Here we consider how users
freely explore and perceive one fundamental property of a spring: its stiffness.

Interaction with a deformable object using a MLHD is equivalent to active explo-
ration of a compliant object by contact with a rigid surface. Srinivasan and LaMotte
[16] showed that humans can be quite effective at discriminating the compliance of ob-
jects and surfaces. Sensory information for this task comes from two sources: the skin
(cutaneous) and the muscles, tendons and joints (kinesthesis). Srinivasan and LaM-
otte [16] also showed that kinesthesis is required for the discrimination among levels
of compliance when springs are covered with a rigid surface. Furthermore, LaMotte
[13] showed that people can discriminate stiffness even while wielding a tool when
allowed active control. Vision also contributes to stiffness perception, as shown by Wu
et al. [19], sometimes compensating for systematic bias in the haptic system. Indeed,
Bingham et al. [5] showed that vision alone is sufficient for identifying spring motion,
raising the issue of whether rendered forces will add to the realism of a stiffness model
in which visual feedback of spring motion is present.

We used two classic psychophysical procedures to characterize perception of stiff-
ness and to gauge the effectiveness of the spring simulation. One is magnitude esti-
mation, which assesses how internal responses to the stiffness co-vary with rendered
values. The other is the just noticeable difference procedure (JND), which assesses how
perceptible small differences in stiffness are and how the perceptibility varies with the
base stiffness value. One common finding in many perceptual domains is that the JND
threshold is a constant proportion of the base value, following what is commonly called
Weber’s law. That proportion is called the Weber fraction. Together, these measures de-
scribe stiffness perception over a broad range of supra-threshold values and at the limits
of discrimination. Given the demands of fabricating real spring samples and the com-
plexities of these procedures, it would not be possible to do such a study without the

3

rendering capabilities of a MLHD, which makes it possible to generate high-resolution
stiffness values over a broad range in the context of the ongoing experiment.

The first section of this document provides the specifications of a MLHD that lends
itself to render a realistic haptic spring. Next, the theory behind the 3D helical spring
model, application of the theory to render the simulation, and handling of real-world
issues are presented. The first subsection derives the equations for forces, moments
and shape of the spring during compression that are stated in [14]. It also provides
details on how this model was extended to derive the equations during elongation. The
following two subsections explain how the theory was adapted to create the haptic and
visual simulations. The last part of this section explains how the device was calibrated
along the vertical axis. The next section describes the setup of the psychophysical
experiments, their execution, and the obtained results. The last section interprets the
results, lists the key contributions of the work, and suggests some future directions.

2 Magnetic Levitation Haptic Device
A MLHD consists of a handle that is attached to a magnetically levitated flotor, which
has the shape of a hemisphere. Three photodiode sensors and LED markers are used to
monitor the position of the flotor. A MLHD provides maximum stiffness, kmax, of ap-
proximately 25 N/mm in translation and 50.0 Nm/rad in rotation. This stiffness refers
to the performance limit in unilateral constraints while rendering rigid surfaces. The
maximum force and the maximum moment generated ranges between 55 N to 140 N
and between 6.3 Nm to 12.2 Nm respectively depending on the axis. These charac-
teristics make a MLHD appropriate for rendering springs since it is necessary in some
cases to simulate high stiffnesses associated with “hard” springs and high moments
experienced during buckling. Interaction with a 3D spring involves forces along the
three axes of translation and moments about the three axes of rotation and thus requires
a device with 6 degrees of freedom (DoFs). A MLHD satisfies this requirement since
the 6-DoF motion of its handle has a range approximately that of comfortable fingertip
motion with the wrist stationary (±12 mm translation and ±7◦ rotation in all direc-
tions). In addition, a MLHD provides real-time position and orientation information
with resolutions of 5-10 µm and high position bandwidth (≈125 Hz at ±3 dB) [4].

3 Rendering a 3D Helical Spring
A 3D helical spring was haptically rendered using a MLHD. A corresponding visual
simulation was rendered on a computer monitor. An analytical quasistatic model pro-
posed by T.M. Lowery [14] was used to haptically and visually render the 3D helical
spring. The model assumes a close-coiled helical compression spring with wire of
circular cross section, and upper and lower end plates. The model provides a set of
equations to predict the interactive forces and moments experienced at the plate ends
in two dimensions in response to deformation of the spring. This model was extended
to three dimensions and the derivations of the expressions are presented in the next
few subsections. The extension to 3D was implemented by considering two 2D planes,
X−Y and Y −Z, and combining the computed forces and moments.

4

Figure 1: System of axes.

3.1 Derivation of Spring Equations
Lowery’s [14] main assumption is that the spring behaves like an elastic rod. Haringx
[9] explained that if during compression a helical spring has a sufficiently small pitch,
the deformation of each coil of the spring can be approximated to that of an unclosed
circular ring lying in a flat plane. Based on this approximation, the compressed helical
spring can be replaced by a number of similar rings connected by perfectly rigid ele-
ments as shown in Fig. 2.

Figure 2: Approximation of coil of deformed helical spring as an unclosed ring con-
nected by rigid elements.

Consider a plane of one such ring at {CX ,CY ,CZ}. Its cross-section without any addi-
tional forces acting on it is shown in Fig. 3. Let the moments, normal force, and shear
forces at any point {CX ,CY ,CZ}, be represented as MZ,X , N, and QX ,Z . Subscripts for

5

Figure 3: Plane of an unclosed ring.

forces refer to the respective translation axes and subscripts for moments refer to the
respective rotation axes. Upon application of moments, the planes in which the rings
are situated bisect the angle between two successive rigid elements. The plane is thus
perpendicular to the spring centerline, as shown in Fig. 4a. Application of transverse
forces deflect the ring in its plane such that the rigid elements are displaced in the di-
rection of the transverse force and parallel to themselves, as shown in Fig. 4b. The
planes of the rings are no longer perpendicular to the spring centerline.

Figure 4: (a) Spring distorted by bending moments, (b) Spring distorted by bending
moments and transverse forces.

Hence, the application of a vertical force, P, horizontal forces, HX ,Z , and moments,
MZ,X cause the plane to bend by angles, ψZ,X , and the slope angles caused by shear
alone are φZ,X about the Z and X axes respectively as shown in Fig. 5. The free length
of the spring, L0, changes to the compressed length, L. L < L0 during compression and
L > L0 during elongation. At end conditions, ψZ,X equals either ψUz,x or ψLz,x.

A triangle of forces can be drawn as shown in Fig. 6. It can be seen that

−→
N =

−→
P −−−→HX ,Z . (1)

6

Figure 5: Bending and shearing of plane upon application of moments and forces.

Figure 6: Triangle of forces acting on a coil plane.

The components of
−→
P and

−−→
HX ,Z along

−→
N are

−→
P cos(ψZ,X) and −−−→HX ,Z sin(ψZ,X).

Therefore,
|−→N |= |−→P |cos(ψZ,X)−|−−→HX ,Z |sin(ψZ,X). (2)

The direction of
−→
N is the same as that of the tangent to the spring. Also,

−−→
QX ,Z =

−→
P +
−−→
HX ,Z . (3)

Similarly, taking the components of
−→
P and

−−→
HX ,Z along

−−→
QX ,Z ,

|−−→QX ,Z |= |
−→
P |sin(ψZ,X)+ |−−→HX ,Z |cos(ψZ,X). (4)

The direction of
−−→
QX ,Z is perpendicular to that of

−→
N . When the angles are assumed to

be small,
|−→N | ≈ |−→P |− |−−→HX ,Z | ψZ,X , and (5)

|−−→QX ,Z | ≈ |
−→
P | ψZ,X + |−−→HX ,Z |. (6)

7

Table 1: Table of symbols

L0 Free length of spring
L Compressed length of spring
n Number of active coils
d Wire Diameter
D Mean Coil Diameter
E Young’s Modulus
G Shear Modulus
α Rigidity constant with respect to bending
β Rigidity constant with respect to shear
γ Rigidity constant with respect to compression
k Spring constant as defined by Hooke’s law
P Vertical reaction force
q Buckling factor

HX ,Z Horizontal reaction forces along X and Z axes respectively
MUx,z Resisting moment at the upper end plate about X and Z axes respectively
MLx,z Resisting moment at the lower end plate about X and Z axes respectively

ψX Pitch angle of upper end plate = Angle of rotation about X axis
ψZ Roll angle of upper end plate = Angle of rotation about Z axis

ψUx,z Angles of the upper spring centerline end about the X and Z axis respectively
ψLx,z Angles of the lower spring centerline end about the X and Z axis respectively
ψX ,Z Angle of spring centerline caused by bending alone about the X and Z axis respectively
φX ,Z Slope of spring centerline caused by shear alone about the X and Z axis respectively

N Force normal to cross-section of an equivalent elastic rod
QX ,Z Shear force along the X and Z axes respectively
MX ,Z Moment about the X and Z axes respectively

V Maximum vertical translation of MLHD
TX ,Y,Z Translation along X , Y and Z axes respectively
SX ,Y,Z Sensor data on translation along X , Y and Z axes respectively

Pbuckling Vertical force at which buckling occurs
Lbuckling Compressed length of the spring at which buckling occurs

CX ,Y,Z 3D coordinates of a point on the spring centerline

8

Figure 7: Physical parameters defining a spring.

From this point on, I will refer to |−→K | as simply K. The rigidity constants with respect
to bending α , shear β , and compression γ , are given by

α =
L0d4E

32nD
(
1+ E

2G

) , (7)

β =
L0d4E
8nD3 , and (8)

γ =
L0d4G
8nD3 , where (9)

α , β , and γ are the constants of proportionality relating applied moment and result-
ing curvature, applied shear force and resulting shear deformation, and applied vertical
force and resulting compression, respectively [See Table I and Fig. 7 for symbol mean-
ings]. The vertical reaction force is given by

P = γ
(L0−L)

L0
, (10)

which is the familiar spring equation based on Hooke’s law, where spring constant

k =
γ

L0
. (11)

The moment, MZ,X , acting at any point {CX ,CY ,CZ} is the sum of the vertical force, P,
acting at a perpendicular distance of CX ,Z , horizontal forces, HX ,Z , acting at a perpen-
dicular distance of (L−CY), and the moments, MUz,x, acting at the upper end plate of
the spring, as shown in Fig. 8.
Therefore,

MZ,X = CX ,ZP+HX ,Z (L−CY)+MUz,x. (12)

At the upper end point when CX = 0,CY = L,CZ = 0,

M = MUz,x. (13)

9

Figure 8: 2D view of forces and moments.

At the lower end point when CX = 0,CY = 0,CZ = 0,

M = HX ,ZL+MUz,x. (14)

These two expressions match our definition of MUz,x and MLz,x as in Table 1. Moments
(MZ,X) and the rigidity constant for bending (α) are related by,

d ψZ,X

d CY
≈

MZ,X

α
=

CX ,ZP+HX ,Z (L−CY)+MUz,x

α
. (15)

Shear forces (QX ,Z) and the rigidity constant for shear (β) are related by,

φZ,X =
QX ,Z

β
≈

PψZ,X

β
+

HX ,Z

β
. (16)

The slope of the spring centerline is equal to the sum of the slopes due to bending and
shear. Using (16),

−
d CX ,Z

d CY
= ψZ,X +φZ,X =

(
1+

P
β

)
ψZ,X +

HX ,Z

β
. (17)

Differentiating this equation with respect to CY and substituting (15),

−
d2 CX ,Z

d CY 2 =
(

1+
P
β

)[
PCX ,Z

α
+
(

HX ,Z(L−CY)+MUz,x

α

)]
. (18)

10

A spring buckles during compression when it deforms suddenly and nonlinearly along
the vertical axis. The buckling factor is given by

q2 =
P
α

(
1+

P
β

)
. (19)

The buckling factor predicts the buckling of parallel plates by

qL0 = 2π. (20)

P is positive during compression and negative during elongation. Since α and β are
positive constants, q2 is also positive during compression and negative during elonga-
tion. At this point, the derivation diverges into compression and elongation.

3.1.1 Compression

P and q2 are positive during compression. Rearranging (19),

1+
P
β

=
q2α

P
. (21)

Substituting (21) in (18) and rearranging the terms,

d2 CX ,Z

d CY 2 +q2CX ,Z =−q2
[

HX ,Z(L−CY)+MUz,x

P

]
. (22)

Let

A(CY) =
HX ,Z(L−CY)+MUz,x

P
. (23)

Substituting (23) in (22),

d2 CX ,Z

d CY 2 +q2CX ,Z =−q2A(CY). (24)

A particular solution of the nonhomogeneous linear differential equation (24) is

Cp =−A(CY), (25)

since
d2 A(CY)

d CY 2 = 0, and (26)

d2 Cp

d CY 2 +q2Cp =−q2A(CY). (27)

The complementary function of (24) is determined by using the auxiliary equation of
the second order homogeneous linear differential equation,

m2 +q2 = 0. (28)

This implies that
m =±qi. (29)

Hence, the complementary function is given by

CX ,Z = Bcos(qCY)+Dsin(qCY). (30)

11

Using the superposition principle for nonhomogeneous equations, the general solution
of (22) is obtained by combining the particular solution, (25), and the complementary
function, (30),

CX ,Z =−A(CY)+Bcos(qCY)+Dsin(qCY). (31)

Using the lower boundary condition,

B = A(0) =
HX ,ZL+MUz,x

P
. (32)

Using (32) with the upper boundary condition,

−
MUz,x

P
+

HX ,ZL+MUz,x

P
cos(qL)+Dsin(qL) = 0. (33)

Solving for D,

D =
MUz,x

Psin(qL)
−

HX ,ZL+MUz,x

P tan(qL)
. (34)

Therefore, the complete solution of (24) in the case of compression is

CX ,Z =−
HX ,Z(L−CY)+MUz,x

P
+

HX ,ZL+MUz,x

P
cos(qCY)+

+
(

MUz,x

Psin(qL)
−

HX ,ZL+MUz,x

P tan(qL)

)
sin(qCY).

(35)

Simplifying this expression by pulling out the common factor of
(1

P

)
, and using the

trigonometric identity
1

sin(θ)
− 1

tan(θ)
= tan

(
θ

2

)
, (36)

CX ,Z =
1
P

[
MUz,x

(
tan
(

qL
2

)
sin(qCY)+ cos(qCY)−1

)
+

+HX ,ZL
(
−sin(qCY)

tan(qL)
+ cos(qCY)+

CY

L
−1
)]

.

(37)

This expression gives the X and Z coordinates of a point along the spring centerline.
2π number of points per coil are used to define the spring centerline. The number of
turns in a spring, n, stays constant with change in compressed length, L. What changes
is the vertical height of each turn. Therefore, the Y coordinate, CY , for each of these
2nπ points is given by

CY =
i∗L
2nπ

, i : 0→ 2nπ , and (38)

The next step is to find an expression for ψZ,X . Using (37) and differentiating CX ,Z with
respect to CY , we get

d CX ,Z

d CY
=

1
P

[
MUz,x

(
q tan

(
qL
2

)
cos(qCY)−qsin(qCY)

)
+

+HX ,ZL
(
−qcos(qCY)

tan(qL)
−qsin(qCY)+

1
L

)]
.

(39)

12

Using (17), we get

ψZ,X =−
(

d CX ,Z

d CY
+

HX ,Z

β

)(
β

P+β

)
. (40)

Substituting (39) in (40), and rearranging the terms, we get

ψZ,X =− 1
P

(
β

P+β

)[
MUz,x

(
q tan

(
qL
2

)
cos(qCY)−qsin(qCY)

)
+

+HX ,ZL
(
−qcos(qCY)

tan(qL)
−qsin(qCY)

)]
−

HX ,Z

P
.

(41)

Taking the reciprocal of (19), and substituting in (41),

ψZ,X =− 1
αq

[
MUz,x

(
tan
(

qL
2

)
cos(qCY)− sin(qCY)

)
−

−HX ,ZL
(

cos(qCY)
tan(qL)

+ sin(qCY)
)]
−

HX ,Z

P
.

(42)

[Note: Expression (42) is very similar to the expression given by Lowery [14] for
ψZ,X if α is substituted with its expression in (7). The main difference is that the term(
−HX ,Z

P

)
is within the square braces in [14]. We believe that this is the typo because

our derivation tells otherwise, and also such an expression as given by [14] cannot lead
to forthcoming expressions, which are identical with those given by [14].]

The value of ψZ,X at the lower boundary condition is

ψZ,X (0) = ψLz,x =− 1
αq

[
MUz,x tan

(
qL
2

)
−HX ,ZLcot(qL)

]
−

HX ,Z

P
. (43)

The value of ψZ,X at the upper boundary condition is

ψZ,X (L) = ψUz,x =− 1
αq

[
MUz,x

(
tan
(

qL
2

)
cos(qL)− sin(qL)

)
−

−HX ,ZL
(

cos(qL)
tan(qL)

+ sin(qL)
)]
−

HX ,Z

P

=
1

αq

[
MUz,x tan

(
qL
2

)
+HX ,ZLcsc(qL)

]
−

HX ,Z

P
, since

(44)

tan
(

θ

2

)
cosθ − sinθ =− tan

(
θ

2

)
. (45)

Adding ψLz,x and ψUz,x,

ψLz,x +ψUz,x =
HX ,ZL

αq
cot
(

qL
2

)
−

2HX ,Z

P
, since (46)

cot(θ)+ csc(θ) = cot
(

θ

2

)
. (47)

Solving for HX ,Z ,

HX ,Z =
P(ψLz,x +ψUz,x)

LP
qα tan

(
qL
2

) −2
. (48)

13

Using the value of HX ,Z in (44), MUz,x is solved for as

MUz,x =
[(

HX ,Z

P
+ψUz,x

)
αq−

HX ,ZL
sin(qL)

]
cot
(

qL
2

)
. (49)

The moment acting at the lower end plate, MLz,x, was previously computed in (14). It
is restated here for the sake of convenience

MLz,x = HX ,ZL+MUz,x .

3.1.2 Elongation

The value of q2 is negative during elongation. Consider a variable, q̃, such that

q̃ 2 =±q2. (50)

During compression when q2 > 0, q̃ 2 = |q2|, and during elongation when q2 < 0,
q̃ 2 =−|q2|. In other words, during both compression and elongation

q̃ 2 =
∣∣∣∣Pα
(

1+
P
β

)∣∣∣∣ . (51)

The elongation equivalent of (24) is

d2 C
′
X ,Z

d CY 2 − q̃ 2C
′
X ,Z = q̃ 2A(CY). (52)

The particular solution of this nonhomogeneous differential equation stays the same as
Cp =−A(CY). The auxiliary equation is however,

m2− q̃ 2 = 0, (53)

which implies that
m =±q̃. (54)

The corresponding complementary function is

C
′
X ,Z = B

′
cosh(q̃CY)+D

′
sinh(q̃CY), (55)

and the general solution of (52) is

C
′
X ,Z =−A(CY)+B

′
cosh(q̃CY)+D

′
sinh(q̃CY). (56)

Using the lower boundary condition,

B
′
= B = A(0) =

HX ,ZL+MUz,x

P
. (57)

Using the upper boundary condition,

D
′
=

MUz,x

Psinh(qL)
−

HX ,ZL+MUz,x

P tanhqL
. (58)

14

The complete solution is therefore,

C
′
X ,Z =−

HX ,Z(L−CY)+MUz,x

P
+

HX ,ZL+MUz,x

P
cosh(q̃CY)+

+
(

MUz,x

Psinh(q̃L)
−

HX ,ZL+MUz,x

P tanh(q̃L)

)
sinh(q̃CY).

(59)

The simplified complete expression for C
′
X ,Z , or CX ,Z during elongation, using the

trigonometric identity

1
sinh(θ)

− 1
tanh(θ)

=− tanh
(

θ

2

)
is (60)

C
′
X ,Z =

1
P

[
MUz,x

(
− tanh

(
q̃L
2

)
sinh(q̃CY)+ cosh(q̃CY)−1

)
+

+HX ,ZL
(
−sinh(q̃CY)

tanh(q̃L)
+ cosh(q̃CY)+

CY

L
−1
)]

.

(61)

The expression for CY stays the same as in the case of compression, (38). Differentiat-
ing C

′
X ,Z with respect to CY ,

d C
′
X ,Z

d CY
=

1
P

[
MUz,x

(
−q̃ tanh

(
q̃L
2

)
cosh(q̃CY)+ q̃sinh(q̃CY)

)
+

+HX ,ZL
(
−q̃cosh(q̃CY)

tanh(q̃L)
+ q̃sinh(q̃CY)+

1
L

)]
.

(62)

Substituting (62) in (40), and rearranging the terms,

ψ
′
Z,X =− 1

P

(
β

P+β

)[
MUz,x

(
−q̃ tanh

(
q̃L
2

)
cosh(q̃CY)+ q̃sinh(q̃CY)

)
+

+HX ,ZL
(
−q̃cosh(q̃CY)

tanh(q̃L)
+ q̃sinh(q̃CY)

)]
−

HX ,Z

P
.

(63)

Taking the reciprocal of (51), and substituting in (63),

ψ
′
Z,X =− 1

α q̃ 2

[
MUz,x

(
−q̃ tanh

(
q̃L
2

)
cosh(q̃CY)+ q̃sinh(q̃CY)

)
+

+HX ,ZL
(
−q̃cosh(q̃CY)

tanh(q̃L)
+ q̃sinh(q̃CY)

)]
−

HX ,Z

P
.

(64)

The value of ψ
′
Z,X at the lower boundary condition is

ψ
′
Z,X (0)= ψ

′
Lz,x =

1
α q̃ 2

[
MUz,x q̃ tanh

(
q̃L
2

)
+HX ,Z L q̃ coth(q̃L)

]
−

HX ,Z

P
. (65)

The value of ψ
′
Z,X at the upper boundary condition is

ψ
′
Z,X (L) = ψ

′
Uz,x =− 1

α q̃ 2

[
MUz,x

(
−q̃ tanh

(
q̃L
2

)
cosh(q̃L)+ q̃sinh(q̃L

)
+

+HX ,ZL
(
−q̃cosh(q̃L)

tanh(q̃L)
+ q̃sinh(q̃L)

)]
−

HX ,Z

P

=− 1
α q̃ 2

[
MUz,x q̃ tanh

(
q̃L
2

)
−HX ,Z L q̃ csch(q̃L)

]
−

HX ,Z

P
, since

(66)

15

− tanh
(

θ

2

)
coshθ + sinhθ = tanh

(
θ

2

)
, and (67)

−cosh(θ)
tanh(θ)

+ sinhθ =
−cosh2(θ)+ sinh2(θ)

sinh(θ)
=
−1

sinhθ
=−csch(θ). (68)

Adding ψ
′
Lz,x and ψ

′
Uz,x,

ψ
′
Lz,x +ψ

′
Uz,x =

HX ,Z L q̃
α q̃ 2

[
coth

(
qL
2

)]
−

2HX ,Z

P
, since (69)

coth(θ)+ csch(θ) = coth
(

θ

2

)
. (70)

Now, q̃ is always positive since it is the square-root of a value. Hence, q̃ = q. However,
during elongation q̃2 =−q2. Substituting these values in (69) and solving for HX ,Z ,

H
′
X ,Z =

P(ψ
′
Uz,x +ψ

′
Lz,x)

−LP
qα tanh

(
qL
2

) −2
. (71)

Using the value of H
′
X ,Z in (44), MUz,x during elongation is solved for as

M
′
Uz,x =

[(
H
′
X ,Z

P
+ψ

′
Uz,x

)
αq+

H
′
X ,ZL

sinh(qL)

]
coth

(
qL
2

)
. (72)

The switch from compression to elongation occurs at L = L0. As L→ L0,P→ 0
and HX ,Z → ∞. In order to calculate the horizontal forces at this limit, consider (46)

ψLz,x +ψUz,x =
HX ,ZL

αq
cot
(

qL
2

)
−

2HX ,Z

P
.

Rearranging the terms,

ψLz,x +ψUz,x

HX ,Z
=

L
αq

cot
(

qL
2

)
− 2

P
. (73)

For small values of P, q2 is also small [See (19)] and so is
(

qL
2

)
. Expanding the

cot
(

qL
2

)
term as a series of infinite sums,

ψLz,x +ψUz,x

HX ,Z
=

L
αq

[
2

qL
− 1

3

(
qL
2

)
+ · · ·

]
− 2

P

=
2
α

[
1
q2 −

L2

12
+ · · ·

]
− 2

P
.

(74)

16

Substituting the reciprocal of (19) in (74),

ψLz,x +ψUz,x

HX ,Z
=

2
α

[
α

P

(
β

β +P

)
− L2

12
+ · · ·

]
− 2

P

=
2
P

[
−1+

β

β +P
− PL2

12α
+ · · ·

]
=

2
P

[
−P

β +P
− PL2

12α
+ · · ·

]
=− 2

β +P
− L2

6α
+ · · ·

(75)

Rearranging the terms in (75),

HX ,Z =
ψLz,x +ψUz,x(
− 2

β+P −
L2

0
6α

+ · · ·
) . (76)

As P→ 0, L→ L0, and

3.2 Haptic Rendering
The setup for the virtual simulation is that of a vertically positioned spring with its
lower end plate fixed to the ground, as shown in Fig. 9. The user deforms the spring
by applying forces and moments to the handle of a MLHD, which represents the upper
end plate.

Figure 9: 3D view of undeformed spring.

The servo loop runs at a rate of 1000 Hz and the same rate is used to record the trans-
lation and rotation data of the handle. The simulation records the real-time translation
and rotation data as input and calculates the forces and moments using the expressions
derived in the previous subsections. Expressions such as (15), (16), (42), and (64) are
not used explicitly but were presented for the purpose of deriving other expressions.
The physical parameters are set to default values at the start of the simulation. The
parameters that need to be set and their default values are L0 = 25mm, d = 0.63mm,
D = 6.07mm, n = 11.8, E = 203395MPa = 203395N/mm2, and G = 75842MPa. They

17

can be modified at run-time using a panel that looks like Fig. 10. This panel also allows
change in control parameters such as proportional and dampening constants. These pa-
rameters determine the translational and rotational limits of the spring and the behavior
of the spring at these limits.

Figure 10: Panel for modifying physical parameters.

However, all the expressions are in terms of the other set of constants - the rigidity
constants. This allows manipulation of the spring’s characteristics through the rigidity
constants as shown in Fig. 11, in addition to manipulation through the physical pa-
rameters. This is possible since all three rigidity constants can be calculated from the
physical parameters. In the current setup, changes in the physical parameters using the
panel in Fig. 10 cause changes in the rigidity constants and are reflected in the panel in
Fig. 11. But due to the underconstrained nature of the relationship between the rigidity
constants and the physical parameters the reverse does not take place, i.e. changes in
rigidity constants using the panel in Fig. 11 do not result in changes in the panel in Fig.
10.

Manipulation through the rigidity constants was predominantly used in our simu-
lation because our first study was on how subjects perceived change in stiffness of the
spring, which related directly to the rigidity constants. In particular we wanted to anal-
yse the perception of the spring constant, k, which is related to γ by (11). The default
values of the rigidity constants were α = 179.15Nmm2, β = 45.52N, and γ = 16.97.
The first step in the simulation was to transform the data into a form that is usable
by the simulation. The downward vertical motion range of the handle, V , is approx-
imately 15mm. In the simulation, this depth corresponds to the free length of any

18

Figure 11: Panel for modifying rigidity constants.

spring, L0. Therefore, the vertical and horizontal translations obtained from the po-
sition sensors, SX ,Y,Z , are first transformed from real world coordinates to simulation
coordinates, TX ,Y,Z , by

TX ,Y,Z = (SX ,Y,Z)
(

L0

V

)
. (77)

TY is negative during compression and positive during elongation. This enables the user
to move the upper end plate through L0 to reach the lower end plate in the simulation
and at the same time reach the bottom of the motion range of the handle in the real
world. The coordinate system used in this document refers to the Y axis as the vertical
axis, while the X and Z axes define the horizontal plane. Furthermore, the simulation
coordinates are vertically offset by L0 such that the simulation coordinates of the lower
end plate are transformed from {0, -L0, 0} to {0, 0, 0}. The compressed length of the
spring is then calculated as the Euclidean distance between the upper end point of the
spring centerline, {TX , L0 + TY , TZ}, and the lower end point of the spring centerline,
{0, 0, 0},

L =
√

T 2
X +(L0 +TY)2 +T 2

Z . (77)

The pitch and roll angles of the flotor handle are computed from the sensor data. They
are the angles of rotation of the upper end plate of the spring about the Z and X axes
respectively (ψZ , ψX). The pitch and roll angles of the lower end plate are zero since it
is held fixed. The angles of the spring centerline ends (ψUx, ψLx, ψUz and ψLz) are the
angles made by the normals to the end points of the spring centerline with the respective
end plates. The first subscript refers to the end plate and the second subscript refers to
the rotation axis. Angles of rotations about the Z axis are used to compute horizontal
forces along X-axis, and vice versa. These angles are computed as

ψLz,x = tan−1
(

TX ,Z

TY

)
, and (77)

ψUz,x = ψLz,x−ψZ,X , (77)

and are shown in Fig. 12. Using the computed value of L, the specified values of L0
and γ , the vertical reaction force is first calculated as in (10). Based on whether L < L0,
L > L0, or L0 +η < L < L0−η , HX ,Z , H

′
X ,Z or HX ,Zlimit are calculated using (48), (71),

19

Figure 12: 2D view of spring angles and translations under deformation.

or (76). η is an empirical value that is used since the limiting value holds for very small
values of P, in addition to when L = L0. Using the computed horizontal reaction forces,
MUz,x or M

′
Uz,x are calculated, using (49) or (72). There is no special expression for the

moments in the limiting case - the appropriate expression is used based on whether η

is positive or negative. In all cases, (14) is used to calculate MLz,x .
Certain changes were made to the prescribed values of the forces and moments. The

resisting moment experienced upon rotation about the spring’s vertical axis (yaw) is not
defined by the analytical model in [14]. In this simulation it is modeled as a resisting
moment proportional to the rotation. A feedforward force with magnitude equal to the
weight of the flotor (7.7N) and in opposite direction to gravity is added to the computed
value of P while assigning the outputs. A difference between [14] and our simulation
is that that the lower end plate is our simulation is not capable of rotation. This issue is
addressed by making the computed forces in the simulation undergo a transformation
of axes through ψLz and then through ψLx. Commutativeness of axes transformations
is assumed since the angles are small. The moments experienced at the upper end plate
as a result of these transformations are the sum of MUz,x and MLz,x.

If the calculated forces and moments with the default physical parameters and rigid-
ity constant values are rendered using a MLHD, harsh forces are experienced upon
compression to a certain length. The compressed length at which this occurred was
invariant over trials. After ensuring that there were no other forces or moments acting,
I hypothesised that the observed phenomenon was buckling. The forces, moments, and
shape of the spring coil after buckling was not predicted by [14] and hence the harsh

20

forces. The first step was to predict when buckling occurred. Using (19) and (20), the
value of P at which buckling occurs is

Pbuckling =
β

2

(
−1+

√
1+

16π2α

βL2
0

)
(77)

Using (10), the compressed length at which buckling occurs can be expressed as

Lbuckling = L0

[
1− β

2γ

(
−1+

√
1+

16π2α

βL2
0

)]
. (77)

The buckling point depends on the specific settings of the spring parameters. For ex-
ample, a spring of lower stiffness has its buckling point higher than a very stiff spring,
relative to the lower end plate. The behavior of the spring after buckling is not defined
in [14]. A temporary solution was to set the horizontal forces and moments to zero and
to scale down the vertical force. This renders an illusion of the spring bottoming out
after buckling. Unseating of the spring, or slipping of the lower end plate, does not
occur in this simulation because the lower end plate is held fixed. In some springs, the
buckling point is so low relative to the lower end plate that it occurs at a compressed
length lower than that at which the spring coils touch each other completely. In this
case, the touching of the spring coils prevents further compression and hence such a
spring never buckles. The case in which the spring coils touch each other completely
is handled by rendering a high vertical reaction force when L = nd.

A spherical boundary was implemented to keep the flotor within its sensor range.
A heuristic for the radius of the spherical boundary was the maximum vertical com-
pression possible, L0−L, after which the spring coils touch each other completely. The
boundary was modeled as a proportional-derivative controlled repulsive boundary. The
derivative gain was set as a variable depending on the stiffness of the spring. The angle
of rotation was limited to 2.86 ◦. This limitation was necessary to keep the flotor within
the sensor range in the cases where the resisting moments are very high.

Spring weight, seat friction, end-coil effects and the dynamics of a spring are not
included in the quasi-static model. However, due to the 580g mass of the flotor, the sim-
ulation brings out dynamic characteristics of a spring such as oscillations with damping
effect. For example, if the spring is lightly compressed and released, the frequency and
amplitude of the resulting dampened oscillation motion is less than that when the spring
is compressed with a larger force.

3.3 Visual Rendering
The spring coil was built in three stages: (1) definition of the spring centerline based
on Lowery’s model, (2) definition of a helical curve based on the spring centerline,
and (3) definition of a helix with a circular cross-section based on the helical curve,
as shown in Fig. 13. These definitions are used to update the graphics at a rate of
30 Hz. The graphics of the 3D spring was rendered using Open Inventor [8]. The
transformation of the translation data captured by the sensors, and the calculation of
the vertical force, horizontal forces and resisting moments are identical to those used
for haptic rendering. These data are then used to calculate the 3D coordinates of each
point in the spring centerline as given by (38), and (37) or (61). These values also
undergo a transformation of axes through ψLz and then through ψLx.

21

(a) (b)

(c)

Figure 13: Building a visual spring: (a) Spring centerline (b) Helical curve (c) Helix
with a circular cross-section.

A static helix of one coil is defined as {cos(i), i, sin(i)}, where i : 0→ 2π . A helix
of diameter D and with each point in its centerline having coordinates {CX , CY , CZ} is
defined as {

Dcos(i)
2

+CX , CY ,
Dsin(i)

2
+CZ

}
, i : 0→ 2nπ. (78)

In Open Inventor, the helix is rendered using a NURBS curve, with as many points as
there are in the spring centerline, and with a matrix of the coordinates of each point in
the helix. For a helix with a circular cross-section, circles defined by eight equiangular
points were drawn about each point in the helical curve. The corresponding points on
each of the circles are connected using Open Inventor’s QuadMesh class, with as many
points as there are in the spring centerline, and with a matrix of the eight equiangular
points of each circle. The number of points in the spring centerline are large enough
to render a seamless helix and small enough to render a real-time simulation on an
AMD XP 2000+ computer with a nVIDIA GeForce4 TI 4600 graphics card. In our
simulation there were as many points such that the distance between each of the points
is 0.1 units vertically.

22

3.4 Calibration along the Vertical Axis
Accurate and realistic haptic rendering of a deformable object required calibration of
the MLHD along the vertical axis. The flotor of a MLHD has 6 coils as shown in Fig.
14. Each coil lies between a fixed magnet assembly as shown in Fig. 15. When the
current passes through a coil, a Lorentz force is applied to the flotor. In other words,
Lorentz forces are generated where the current loops of the six actuator coils intersect
with the magnetic flux loops. Hence, the magnetic field and thereby the Lorentz forces
obtained from the coil currents are dependent on the position of the coil in the air gap.
Due to the large air gap in each magnet assembly these fields are not uniform in the
given workspace, which leads to a nonlinear force vs. displacement curve [4].

Figure 14: Arrangement of coils in a flotor of a MLHD.

Figure 15: Single magnet assembly within a MLHD.

To address this issue the device was calibrated and the first step was to plot the
nonlinearity by commanding a constant desired feedforward force, using a force sen-
sor to measure the actual rendered force for every 1 mm of displacement, and repeating
this process for different values of feedforward force. First, a physical setup was built
to hold the force sensor.A plate with screw holes was inserted through the hole of the
MLHD handle. An identical plate was placed on top of the handle. These plates were
clamped together with two pairs of screws and bolts. The rest of the setup included
erector sets and face plates to hold the force sensor and was designed in such a way

23

that it had a stable base. The setup was then placed on top of the MLHD. The weight
of the flotor was measured as 6.9N and the two plates, screws and bolts added a weight
of 1.68N, making the net weight of the flotor as 8.58N. Next, API functions were used
to levitate the flotor in a manner suitable for calibration. A calibration mode was pro-
grammed, in which all the axes besides the vertical axis are locked using an appropri-
ate API command, and a specified feedforward force is commanded. The feedforward
force was set at a value greater than that required to counter the weight of the flotor.
Lastly, the force sensor was then lowered so that it sits just on top of the plate that
is attached on top of the handle. The force sensor is then lowered by a millimeter at
a time. The reading on the force sensor and the values given by the position sensors
(incorporated into the calibration mode) were noted. This step was repeated for 14mm
for two iterations of feedforward values of 10N and 12N. This gave four force versus
displacement curves. Had the magnetic fields of the MLHD been uniform in the given
workspace, the force readings would have been a constant value of the difference be-
tween the commanded feedforward force and the weight of the flotor. However, the
error caused by the nonlinearity was found to be approximately 10.87%.

Each of the four curves were first denormalised by subtracting each curve by its
mean. Next, the nonlinear error curve was parameterized by fitting a second-degree
polynomial function to it. This normalised polynomial was found using MATLAB
[17] as shown in Fig. 16 and is expressed as

p(x) =−0.00451x2−0.02583x+0.19157, where (78)

x is the normalised displacement.

Figure 16: Nonlinear Error Curve.

If p(x) is inverted and applied to each of the normalised force readings, a straight line
at ∼1 is obtained. In order to be applied to the run-time unnormalised force values,

24

p(x) was denormalised by adding the mean value of each curve to itself. This mean
value is unknown during run-time. Hence, it was approximated as the commanded
feedforward force. If the denormalised polynomial curve is inverted and multiplied to
the calculated vertical force values, a straight line at ∼1 is obtained. Hence, it is then
multiplied by the mean force value or the commanded feedforward force. The final
equation for calibration is

Pcalibrated =
P×FF

p(x)+FF
, where (78)

FF is the commanded feedforward force.

4 PSYCHOPHYSICAL EXPERIMENTS
Implementation of an analytical model of the spring allowed for easy modification of
the spring parameters. Such a spring can be defined either in terms of its physical
properties (L0,n,d,D,E, and G) or in terms of its rigidity constants (α,β ,γ). It can be
seen from (4), (5), and (6) that α and β vary only with γ if D,G and E were assumed
to be constant. Using this property, two psychophysical experiments, Spring Stiffness
Magnitude Estimation and JND of Spring Stiffness, were implemented using springs
of varying γ . Two modalities were presented in each experiment: vision and haptics
(VH), where the subject could see a graphic representation of the haptic spring, and
haptics-alone (H), where the window displaying the visual spring was hidden. The
visual spring did not change in appearance (e.g., coil thickness or length) with change
in γ to prevent the use of visual size and shape cues. However, the visual spring does
reflect the motion and deformable characteristics of the haptic spring. The subjects
were allowed to modify their view of the visual spring by zooming in or out, rotating
the spring about its vertical axis, and changing the angle of inclination of the plane upon
which the spring rested. The subjects wore headphones playing white noise during the
experiments to minimize auditory influences. A warning in the form of a beep (audible
over the noise) and printed message was given if the subject applied a force against the
virtual boundary sufficient to push the flotor out of the device’s sensor range.

4.1 Spring Stiffness Magnitude Estimation
Sixteen students (6 females and 10 males) from Carnegie Mellon University served as
subjects. Two were left-handed and the rest were right-handed by self-report. Eight of
the subjects started in the VH modality and the rest started in the H modality, consti-
tuting an order variable.

Twelve springs with γ ranging uniformly from 12.0 N to 48.0 N (corresponding to
k ranging uniformly from 0.48 N/mm to 1.92 N/mm for L0 = 25.0 mm) were presented
to each subject in random order. A subject started in a particular modality and went
through three replications of the 12 randomly ordered springs and was then presented
with three replications in the other modality. Each set of replications was preceded by a
demo of 5 springs in the same modality, sampled from the range of γs experienced and
included the maximum and minimum values of γ . The subject was asked to rate the
springs using any number, with the rule that a higher number meant that the spring felt
stiffer. The range was self-selected by the subject; analysis of the data included nor-
malization to account for inter-subject variability in the range. With 3 replications of 12

25

γ values in two modalities, there were 72 trials total per subject, lasting approximately
20 minutes.

4.2 Just Noticeable Difference of Spring Stiffness
Sixteen students (7 females and 9 males) from Carnegie Mellon University served as
subjects. Two were left-handed and the rest were right-handed by self-report. Eight of
the subjects started in VH modality and the other eight started in H modality, constitut-
ing an order variable.

A version of Kaernbach’s unforced weighted up-down adaptive threshold estima-
tion was used to rapidly determine the JND [12]. According to this technique, subjects
are asked to compare between a base γB and a comparison γC. A correct decision
reduces the difference δ between γB and γC by stepsize D1. An incorrect decision in-
creases δ by a stepsize of D2, and an indeterminate answer increases δ by a stepsize of
D3 < D2. These values were proportional to D1 specified by the algorithm with a goal
of converging to an accuracy of 75%. The initial value of D1 was chosen as 25% of
the initial δ , which was chosen as 40% of γB; these values were pre-tested to confirm
convergence in a reasonable time. Under the algorithm, as the experiment progresses
γC moves towards γB and reaches an equilibrium after a certain number of reversals in
the direction of δ . The stepsizes are halved at the 2nd and 4th reversals. Equilibrium
is assumed after occurence of the 8th reversal and the JND is calculated as the mean of
all δ s between the 4th and the 8th reversal.

The experiment consisted of 3 γBs of 17.0 N, 26.0 N and 35.0 N (corresponding
to ks of 0.68 N/mm, 1.04 N/mm and 1.4 N/mm for L0 = 25.0 mm). Four replications
of alternating modalities were conducted per subject. The base values followed a non-
repeating Latin-square order between replications, and the order within a replication
was randomly chosen from the 6 possible permutations. The experiment was preceded
by a demo of 4 springs in each modality in mixed order, which together sampled the
range of γ and the types of comparisons (one spring obviously stiffer than the other,
one spring close but distinguishable from the other, and two very similar springs) the
subject would experience. The experiment took approximately 1 hour per subject,
during which the subject felt about 200 pairs of springs.

4.3 Results
4.3.1 Spring Stiffness Magnitude Estimation

For the magnitude estimation task, the normalized magnitude rating were analyzed
with an ANOVA on modality (2, VH and H), order (2: VH first; H first), and γ (12).
The effect of modality did not approach significance [F(1, 14) < 0.02, p = 0.88] nor
was the effect involving order significant [F(1, 14) < 0.823, p = 0.198]. The sole effect
was that of γ [F(11, 154) = 13.57, p < 0.001], as shown in Fig. 17. This reflected an
increase in judged magnitude with rendered γ that was essentially linear (R2 for linear
trend = 0.983).

The positions of the handle and forces applied by the subjects during the experiment
were recorded at 1000 Hz. From these data, the variables of mean velocity, acceleration
and force along the vertical axis were analyzed with an ANOVA on γ (12), and modality
(2, VH and H). The effect of γ was clearly seen in the variables of mean velocity
[F(11,77) = 9.25, p < 0.001], acceleration [F(11, 77) = 3.73, p < 0.001], and force

26

Figure 17: Plot of perceived γ vs. real γ in Vision+Haptics and Haptics-alone modali-
ties.

[F(11,77) = 11.92, p < 0.001] along the vertical axis. However, these three variables
were not affected by modality.

4.3.2 Just Noticeable Difference of Spring Stiffness

For the JND task, the threshold values were analyzed with an ANOVA on modality (2,
VH and H), γB (3), and order (2: VH first; H first). This analysis showed effects of
modality [F(1, 14 = 11.94, p = 0.004] and γB [F(2, 28) = 23.01, p < 0.001], but no
significant effect involving order, as shown in Fig. 18.

The hypothesis that the JND is a constant fraction of γB for each modality would
predict a modality by γB interaction, which approached significance [F(2, 28) = 3.10,
p = 0.061]. In a subsidiary analysis testing this hypothesis, it was found that JND
expressed as a proportion of γB was statistically invariant across γB values for both the
VH [F(2,30) = 1.46, p = 0.25] and H conditions [F(2,30) = 0.80, p = 0.46]. The average
JND as a proportion of γB, i.e., the “Weber fraction,” was 14.2% for VH versus 17.2%
for H, and these differed reliably [t(15) = 3.30, p = 0.005 (two-tail)].

The variables of mean velocity, acceleration and force along the vertical axis were
analyzed with an ANOVA on γB (3), and modality (2, VH and H). The findings were
that velocity shows only an effect of γB [F(2,12) = 5.13, p = 0.025], acceleration shows
no effect of γB or modality, and force shows an effect only of γB [F(2,12) = 13.18, p =
0.001].

27

Figure 18: Bar graph of threshold values for different γBs in Vision+Haptics and
Haptics-alone modalities.

5 Conclusions
From the stated results, it was found that perceived stiffness increased linearly with ren-
dered stiffness across the full range studied here. Clearly, participants in the experiment
were able to discriminate and evaluate the rendered stiffness well. The importance of
kinesthesis is demonstrated by the finding that velocity and acceleration are directly
proportional and force is inversely proportional to the rendered γ . This means that the
level of active control of the spring varied with the rendered γ and implies that it helped
in perception of stiffness. Moreover, visual information did not modulate the judged
stiffness value, indicating that it relied completely on the haptic rendering.

In contrast, although vision did not affect the sense of stiffness, visual cues did
improve people’s ability to discriminate between two stiffness values at the difference
threshold. The differential stiffness required to discriminate between two springs in-
creased by over 20% if vision was eliminated. The findings that kinesthetic responses
in the JND experiment depended only on the rendered γ and not on modality further
imply that visual cues were used to improve the performance in the task of discriminat-
ing between springs. A significant finding was the value of Weber fraction for spring
stiffness as 14.2% or 1/7 with both visual and haptic sensory information, and 17.2%
or 1/5.8 with haptic sensory information alone.

During debriefing of subjects, many of them stated that they explored the spring
using vertical oscillatory up and down motions, which agrees with our findings and is
predicted in [16]. Some commented that they started making their decisions using a
certain strategy (compression in most cases) and if the comparisons became difficult,
they tried an additional strategy such as elongation or making note of when buckling
occurred. Almost all subjects commented that the haptic and visual simulations were

28

very realistic. These results demonstrate the effectiveness of a MLHD in rendering a
deformable spring.

6 Key Contributions
In summary, the key contributions of this thesis are:

• Developed a haptic and visual rendering of a 3D coil spring using a Magnetic
Levitation Haptic Device

• Derived equations for describing the behavior of a spring during elongation

• Determined that perception of spring stiffness magnitude follows a linear trend

• Showed that presence of vision enables better discrimination of spring stiffness

• Demonstrated effectiveness of a Magnetic Levitation Haptic Device in rendering
a deformable object

7 Future Work
An improved haptic and visual model for post-buckling spring behavior would increase
the effectiveness and realism of the simulation. Also, an increase in the limit on the
angle of rotation would allow greater exploration of the spring’s characteristics. A
variation of the current implementation of the spring model with a lower end plate
that is not held fixed would allow for unseating. Such a model, along with the cur-
rent implementation, would allow for an analysis of how users perceive buckling and
unseating and the role of each in maintaining stability of the spring. It would be in-
teresting to investigate how people exploit the free exploration provided by the device
in solving the stiffness question. This can be followed by a study to understand how
people perceive the change in a spring’s characteristics, such as stiffness, with respect
to physical parameters (L0,n,d,D,E, and G) and the two other rigidity constants of
the spring (α,β). Comparison of the results of the psychophysical experiments with
virtual springs to parallel experiments with real springs is an important further step.
An immediate application of the simulation of the 3D spring is for educational pur-
poses to develop a “feel” for the role of different materials and structural parameters in
determining the stiffness and behavior of a helical spring.

The Weber fraction for weight discrimination is 1/53 [1]. It would be interesting
to investigate why this value is a fraction of the Weber fraction for spring stiffness
discrimination. Such research might show the effect of applying force versus experi-
encing force on discrimination, depending on the method used to determine the JND
of weight.

In conclusion, this work is a concrete example of the ability of a MLHD to render
a deformable object based on an analytical model and to quantify human perception of
its stiffness.

References
[1] A Dictionary of Psychology 2001. Oxford University Press, 2001.

29

[2] J. Barbic and D. L. James. Real-Time Subspace Integration of St.Venant-
Kirchhoff Deformable Models. In ACM Transactions on Graphics (ACM SIG-
GRAPH 2005), 2005.

[3] K. Bathe. Finite Element Procedures. Prentice Hall, New Jersey, 1996.

[4] P. J. Berkelman and R. L. Hollis. Lorentz Magnetic Levitation for Haptic Inter-
action: Device Design, Performance, and Integration with Physical Simulations.
International Journal of Robotics Research, Vol. 19, No. 7:644–667, July 2000.

[5] G. P. Bingham, R. C. Schmidt, and L. D. Rosenblum. Dynamics and the Orien-
tation of Kinematic Forms in Visual Event Recognition. Journal of Experimental
Psychology, Vol. 21, No. 6:1473–1493, 1995.

[6] M. de Pascale, G. de Pascale, and D. Prattichizzo. Haptic and Graphic Rendering
of Deformable Objects based on GPUs. In IEEE 6th Workshop on Multimedia
Signal Processing, 2004.

[7] A. Frisoli, L. F. Borelli, C. Stasi, M. Bellini, C. Bianchi, E. Ruffaldi, G. Di Pietro,
and M. Bergamasco. Simulation of real-time deformable soft tissues for computer
assisted surgery. The International Journal of Medical Robotics & Computer
Assisted Surgery, 1, Issue 1:107–113, 2004.

[8] Silicon Graphics, Inc., 1140 E. Arques Ave., Sunnyvale, CA, and USA. Open
inventor, http://oss.sgi.com/projects/inventor/.

[9] J. A. Haringx. On Highly Compressible Helical Springs and Rubber Rods, and
their Application for Vibration-free Mountings, I. Philips Research Reports, Vol.
3, NR 6:401–449, 1948.

[10] D. L. James and D. K. Pai. Accurate Real Time Deformable Objects. In SIG-
GRAPH 99 Conference Proceedings, pages 65–72, 1999.

[11] D. L. James and D. K. Pai. A Unified Treatment of Elastostatic and Rigid Contact
Simulation for Real Time Haptics. Haptics-e, the Electronic Journal of Haptics
Research, 2, No. 1, 2001.

[12] C. Kaernbach. Adaptive threshold estimation with unforced-choice tasks. Per-
ception and Psychophysics, Vol. 63:1377–1388, 2001.

[13] R. H. LaMotte. Softness Discrimination With a Tool. Journal of Neurophysiology,
Vol. 83:1777–1786, 2000.

[14] T. M. Lowery. How to predict buckling and unseating of coil springs, pages 56–
60. McGraw-Hill Book Company, 1961.

[15] M. Mahvash and V. Hayward. Haptic Simulation of a Tool in Contact with a
Nonlinear Deformable Body. In IS4TM: Int’l Symp. Surgery Simulation and Soft
Tissue Modelling, pages 311–320. Springer Verlag, 2003.

[16] M. A. Srinivasan and R. H. LaMotte. Tactual Discrimination of Softness. Journal
of Neurophysiology, Vol. 73, No. 1:88–101, 1995.

[17] The Mathworks, Inc. MATLAB. 1994-2007.

30

[18] P. Volino, P. Davy, U. Bonanni, C. Luible, N. Magnenat-Thalmann, M. Mkinen,
and H. Meinander. From measured physical parameters to the haptic feeling of
fabric. The Visual Computer: International Journal of Computer Graphics, Vol.
23, Issue 2:133–142, 2007.

[19] W. Wu, C. Basdogan, and M. A. Srinivasan. Visual, haptic, and bimodal percep-
tion of size and stiffness in virtual environments. ASME Dynamic Systems and
Control, DSC-Vol. 67:19–26, 1999.

31

A Source Code for Haptic Rendering of Spring
The code presented here is function springControl() in the file vvaradha@dulcian:teleop src wdir/maglev/icntrl.c.

/* ml_icntrl.c */
/* simple pid rpy control module with setpoint to coriolis pos */
/* *** more consistency on pass vs. global vars */

#include <math.h>
#include <stdio.h>
#include "ml.h"
#include "icntrl.h"
#include "ml_boxinbox.h"
#include "setControls.h"

/******************************* Externed Globals *****************/

double rotlimkp = 100.0;//working value was 100.0;
double rotlimkv = 0.7;//working value was 0.7;
double transpring =.08;// working value was 0.08;

float wireDiameter = 0.63; // Wire diameter of spring 1
//float wireDiameter = 0.84; // Wire diameter of spring 2
//float wireDiameter = 0.51; // Wire diameter of spring 3

float coilDiameter = 6.07; // Mean coil diameter of spring 1
//float coilDiameter = 11.6; // Mean Coil diameter of spring 2
//float coilDiameter = 4.81; // Mean Coil diameter of spring 3

float shearModulus = 75842; // Shear modulus of spring 1
float youngModulus = 203395; // Young’s modulus of spring 1

float L0 = 25; // Free initial length of spring 1
//float L0 = 37.49; // Free initial length of spring 2
//float L0 = 27.00; // Free initial length of spring 3

float flotor_depth = 15; // Maximum flotor depth in real world coordinates

float n = 11.8; // Number of turns of spring 1
//float n = 9; // Number of turns of spring 2
//float n = 15; // Number of turns of spring 3

float alpha = 179.1; // Rigidity constant wrt moment of spring 1
float beta = 45.5; // Rigidity constant wrt shear of spring 1

float gamma = 16.97; // Rigidity constant wrt compression of spring 1
//float gamma = 12.53; // Rigidity constant wrt compression of spring 2
//float gamma = 10.32; // Rigidity constant wrt compression of spring 3

float scaler = 10;
int change = 0; // 0: change in gamma, 1: change in alpha, 2: change in beta,
// 3: change in physical params

//FILE* spring_datafile;

/**/

/******************************** Local globals ********************/

double prev_des_pos[6] = {0.0,0.0,0.0,0.0,0.0,0.0};

const double local_windup[2] = {50.0,1.0};

32

double pid_ramp=PID_DFLT_RAMP; // speed of ramp up to windup_clamp;
double pid_wndupClamp[2]={PID_PDFLT_WNDUP,PID_ODFLT_WNDUP}; // windup clamps

/**/

int springControl(double int_fwpos[6],shstruct *s)
{
// Physical parameters set at previous points in the code are now
// assigned to symbols for easy use in the code that follows
float d = wireDiameter;
float D = coilDiameter;
float G = shearModulus;
float E = youngModulus;

float PI = 3.14159265;

//Declaration of variables
float P; // Vertical reaction force
float q; // Buckling factor
float Hz; // Horizontal reaction force along the Z axis
float Hx; // Horizontal reaction force along the X axis
float M1z; // Resisting moment of the upper end plate about the Z axis
float M1x; // Resisting moment of the upper end plate about the X axis
float M2z; // Resisting moment of the lower end plate about the Z axis
float M2x; // Resisting moment of the lower end plate about the X axis

float siZu; // Angle made by upperbar about Z-axis,
// measured from X axis - Roll

float siXu; // Angle made by upperbar about X-axis,
// measured from Z axis - Pitch

float siYu; // Angle made by upperbar about Y-axis - Yaw

float si1X; // Angle by normal to upper end of spring centerline
// with upper end plate about X axis

float si1Z; // Angle by normal to upper end of spring centerline
// with upper end plate about Z axis

float si2X; // Angle by normal to lower end of spring centerline
// with upper end plate about X axis

float si2Z; // Angle by normal to lower end of spring centerline
// with upper end plate about Z axis

float L; // Compressed length of spring
float compressY; // Compression along Y-axis
float shearX; // Shear along X-axis
float shearZ; // Shear along Z-axis

float Lvertical; // Compressed length along the Y-axis

float forceY; // Reactive force along the Y-axis
float forceX; // Reactive force along the X-axis
float forceZ; // Reactive force along the Z-axis
float inter_forceY; // Intermediate force value used during transformation of axes

float polyval; // Value of polynomial calculated for calibration

float angle_limit; // Limiting value of roll and pitch angle so that flotor
// does not go out of sensor range

float yaw_limit; // Limiting value of yaw angle so that flotor
// does not go out of sensor range

float buckling_P; // Value of compression force at which buckling occurs

33

float buckling_length; // Value of compressed length at which buckling occurs

//**
// Calculation of run-time variables
compressY = s->fwpos[2]*L0/flotor_depth; // Simulation coordinates of translation

// along Y axis; -ve value if compression
// and +ve if elongation

shearX = s->fwpos[0]*L0/flotor_depth; // Along X axis
shearZ = s->fwpos[1]*L0/flotor_depth; // Along Z axis

siXu = s->fwpos[3]; // Pitch
siZu = -s->fwpos[4]; // Roll
siYu = s->fwpos[5]; // Yaw

Lvertical = L0 + compressY; // Free length of spring + translation along Y axis
// Euclidean distance between upper end of spring centerline
// and lower end of spring centerline
L = sqrt(pow((L0+compressY),2)+pow(shearX,2)+pow(shearZ,2));

si2Z = atan(shearX/Lvertical);
si1Z = si2Z - siZu;

si2X = atan(shearZ/Lvertical);
si1X = si2X - siXu;

switch(change)
{
case 0: // Change in gamma
// beta and alpha are directly proportional to gamma,
// assuming D, E and G are constant
beta = gamma*E/G;
alpha = gamma*pow(D,2)/(4*G/E+2);
break;

case 1: // Change in alpha
beta = alpha*(4+2*E/G)/pow(D,2);
gamma = alpha*(4*G/E+2)/pow(D,2);
break;

case 2: // Change in beta
alpha = beta*pow(D,2)/(4+2*E/G);
gamma = beta*G/E;
break;

case 3: // Change in physical parameters
alpha = L0*pow(d,4)*E/(32*n*D*(1+E/(2*G)));
beta = L0*pow(d,4)*E/(8*n*pow(D,3));
gamma = L0*pow(d,4)*G/(8*n*pow(D,3));
break;

}

buckling_P = (-beta+sqrt(pow(beta,2)+16*pow(PI,2)*alpha*beta/pow(L0,2)))/2;
buckling_length = L0-buckling_P*L0/gamma;

// Radius of the spherical boundary. It is set to the value at which the
// spring coils would touch each other during compression
s->spring_limit[0] = (L0-n*d)*flotor_depth/L0;

//***
// Calculation of force and moment values

if(L <= buckling_length) // If compression is beyond buckling point
{
// This is a rudimentary implementation of handling buckling
forceY = gamma*(L0-L)/(10*L0); // Force along Y axis is reduced to 10 times

34

// less than that computed at that point
forceX = 0; // No horizontal forces
forceZ = 0;
M1x = 0; // No moments
M2x = 0;
M1z = 0;
M2z = 0;

P = forceY;
angle_limit = 0.01; // Angle value is limited to 0.01 radians -

// effectively, no rotation is allowed
yaw_limit = 0.01;

}
else if(L > L0 & L > 0) // Elongation
{
angle_limit = s->spring_limit[2];
yaw_limit = s->spring_limit[3];

P = gamma*(L0-L)/L0;
q = sqrt(-(P/alpha)*(1+P/beta));
Hx = P*(si1Z+si2Z)/((-L*P/(tanh(q*L/2)*alpha*q))-2);
Hz = P*(si1X+si2X)/((-L*P/(alpha*q*tanh(q*L/2)))-2);

if(L < L0+1e-4) // Limit of H as L->L0 and P->0
{
Hx = -beta*(si1Z+si2Z)/(2*(1+beta*pow(L,2)/(12*alpha)));
Hz = -beta*(si1X+si2X)/(2*(1+beta*pow(L,2)/(12*alpha)));

}

// Transformation of axes from Lowery’s model since we assume
// that lower end plate is held fixed

forceX = Hx*cos(si2Z)+P*sin(si2Z);
inter_forceY = P*cos(si2Z)-Hx*sin(si2Z);
forceZ = Hz*cos(si2X)+inter_forceY*sin(si2X);
forceY = inter_forceY*cos(si2X)-Hz*sin(si2X);

M1z = ((Hx/P+si1Z)*alpha*q+Hx*L/sinh(q*L))/tanh(q*L/2);
M1x = ((Hz/P+si1X)*alpha*q+Hz*L/sinh(q*L))/tanh(q*L/2);
M2z = M1z + Hx*L;
M2x = M1x + Hz*L;

}
else if(L <= L0 & L > 0) // Compression
{
angle_limit = s->spring_limit[2];
yaw_limit = s->spring_limit[3];

P = gamma*(L0-L)/L0;
q = sqrt((P/alpha)*(1+P/beta));

Hx = P*(si1Z+si2Z)/(L*P/(tan(q*L/2)*alpha*q)-2);
Hz = P*(si1X+si2X)/(L*P/(tan(q*L/2)*alpha*q)-2);

if(L > L0-1e-4) // Limit of H as L->L0 and P->0
{
Hx = -beta*(si1Z+si2Z)/(2*(1+beta*pow(L,2)/(12*alpha)));
Hz = -beta*(si1X+si2X)/(2*(1+beta*pow(L,2)/(12*alpha)));

}

// Transformation of axes from Lowery’s model since
// we assume that lower end plate is held fixed
forceX = Hx*cos(si2Z)+P*sin(si2Z);
inter_forceY = P*cos(si2Z)-Hx*sin(si2Z);

35

forceZ = Hz*cos(si2X)+inter_forceY*sin(si2X);
forceY = inter_forceY*cos(si2X)-Hz*sin(si2X);

M1z = (alpha*q*(Hx/P+si1Z)-Hx*L/sin(q*L))/tan(q*L/2);
M1x = (alpha*q*(Hz/P+si1X)-Hz*L/sin(q*L))/tan(q*L/2);
M2z = M1z + Hx*L;
M2x = M1x + Hz*L;

}

// Calibration along vertical axis
polyval = -0.00451*pow(s->fwpos[2],2)-0.02583*s->fwpos[2]+0.1915;
forceY *= s->feedfor/(s->feedfor+polyval);

// Assign force values
// Add feedforward force to counter weight of flotor
s->force[2] = forceY + s->feedfor;
s->force[0] = forceX;
s->force[1] = forceZ;
s->force[3] = M1x+M2x; // Moment felt at upper end plate is sum of
// calculated M1 and M2 since lower end plate
// is held fixed

s->force[4] = -M1z-M2z; // Sign change
s->force[5] = 0; // Assigned as 0 and calculated later

// Slightly dampen the moments to avoid oscillations caused by small disturbances
s->force[3] = - s->Kv[1]*(s->fwpos[3]-s->prev_fwpos[3])*s->rate + s->force[3];
s->force[4] = - s->Kv[1]*(s->fwpos[4]-s->prev_fwpos[4])*s->rate + s->force[4];

// Yaw force is modeled as proportional to the yaw angle.
s->force[5] = - s->Kv[1]*(s->fwpos[5]-s->prev_fwpos[5])*s->rate
-s->spring_limit[1]*(s->fwpos[5]);

// Distance of the handle from the center of the flotor’s hemisphere
// in terms of real world coordinates
float real_dist = sqrt(pow(s->fwpos[0],2)+pow(s->fwpos[1],2)+pow(s->fwpos[2],2));

// If the handle is beyond the boundary, then simulate a hard wall
if(real_dist > s->spring_limit[0])
{
// Kp[0]: Proportional constant for translation,
// Kv[0]: Dampening constant for translation
s->force[0] = -s->Kp[0]*(real_dist-s->spring_limit[0])*s->fwpos[0]/real_dist
-s->Kv[0]*(s->fwpos[0]-s->prev_fwpos[0])*s->rate+s->force[0];

s->force[1] = -s->Kp[0]*(real_dist-s->spring_limit[0])*s->fwpos[1]/real_dist
-s->Kv[0]*(s->fwpos[1]-s->prev_fwpos[1])*s->rate+s->force[1];

s->force[2] = -s->Kp[0]*(real_dist-s->spring_limit[0])*s->fwpos[2]/real_dist
-s->Kv[0]*(s->fwpos[2]-s->prev_fwpos[2])*s->rate+s->force[2];

}

// The proportional constant to restrict angular motion depends on the gamma
// of the spring. It is empirically set as 2.5 times gamma. A value of 30 has
// been identified as the minimum for this constant.

float propConstant = s->Kp[1]*gamma;

if(propConstant < 30)
{
propConstant = 30;

}

36

if(fabs(s->fwpos[3])>angle_limit)
{
if(s->fwpos[3]>0.0)

{
s->force[3] = -(s->fwpos[3]-angle_limit)*propConstant
-(s->fwpos[3]-s->prev_fwpos[3])*s->Kv[1]*s->rate+s->force[3];

}
else

{
s->force[3] = -(s->fwpos[3]+angle_limit)*propConstant

-(s->fwpos[3]-s->prev_fwpos[3])*s->Kv[1]*s->rate+s->force[3];
}

}

if(fabs(s->fwpos[4])>angle_limit)
{
if(s->fwpos[4]>0.0)

{
s->force[4] = -(s->fwpos[4]-angle_limit)*propConstant

-(s->fwpos[4]-s->prev_fwpos[4])*s->Kv[1]*s->rate+s->force[4];
}

else
{
s->force[4] = -(s->fwpos[4]+angle_limit)*propConstant

-(s->fwpos[4]-s->prev_fwpos[4])*s->Kv[1]*s->rate+s->force[4];
}

}

if(fabs(s->fwpos[5])>yaw_limit)
{
if(s->fwpos[5]>0.0)

{
s->force[5] = -(s->fwpos[5]-yaw_limit)*propConstant

-(s->fwpos[5]-s->prev_fwpos[5])*s->Kv[1]*s->rate+s->force[5];
}

else
{
s->force[5] = -(s->fwpos[5]+yaw_limit)*propConstant

-(s->fwpos[5]-s->prev_fwpos[5])*s->Kv[1]*s->rate+s->force[5];
}

}

// If force values are greater than these specified values, emit a beep
if(fabs(s->force[0]) > 10 || fabs(s->force[1]) > 10 || fabs(s->force[2]) > 50)
{
printf("%c\n",7);

}
}

37

B Source Code for Visual Rendering of Spring
The code presented here is the file vvaradha@dijeridu:src/teleop wdir/springGraph.C.

/* solid cube inside wireframe cube */
/*
> CC -n32 -c cubes.C
> CC -n32 -o cubes cubes.o -L/usr/lib32/ -lInventor -lInventorXt -lm

*/

#include <Inventor/Xt/SoXt.h>
#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>
#include <Inventor/Xt/SoXtRenderArea.h>
#include <Inventor/Xt/SoXtComponent.h>
#include <Inventor/engines/SoElapsedTime.h>
#include <Inventor/manips/SoTransformManip.h>
#include <Xm/Form.h>
#include <Inventor/nodes/SoCube.h>
#include <Inventor/nodes/SoCone.h>
#include <Inventor/nodes/SoCylinder.h>
#include <Inventor/nodes/SoSphere.h>
#include <Inventor/nodes/SoDrawStyle.h>
#include <Inventor/nodes/SoLightModel.h>
#include <Inventor/nodes/SoDirectionalLight.h>
#include <Inventor/nodes/SoMaterial.h>
#include <Inventor/nodes/SoPerspectiveCamera.h>
#include <Inventor/nodes/SoSeparator.h>
#include <Inventor/nodes/SoTransform.h>
#include <Inventor/sensors/SoIdleSensor.h>
#include <Inventor/nodes/SoScale.h>
#include <Inventor/nodes/SoTranslation.h>
#include <Inventor/nodes/SoMaterialBinding.h>
#include <Inventor/nodes/SoNormal.h>
#include <Inventor/nodes/SoNormalBinding.h>
#include <Inventor/nodes/SoCoordinate3.h>
#include <Inventor/nodes/SoFaceSet.h>
#include <Inventor/nodes/SoLineSet.h>
#include <Inventor/nodes/SoRotationXYZ.h>
#include <Inventor/nodes/SoTexture2.h>
#include <Inventor/nodes/SoCallback.h>
#include <Inventor/nodes/SoEventCallback.h>
#include <Inventor/nodes/SoSelection.h>
#include <Inventor/nodes/SoPointSet.h>
#include <Inventor/nodes/SoShapeHints.h>
#include <Inventor/nodes/SoFaceSet.h>
#include <Inventor/nodes/SoRotationXYZ.h>
#include <Inventor/nodes/SoRotation.h>
#include <Inventor/events/SoEvent.h>
#include <Inventor/events/SoKeyboardEvent.h>
#include <Inventor/events/SoMouseButtonEvent.h>
#include <Inventor/events/SoMotion3Event.h>
#include <Inventor/sensors/SoTimerSensor.h>
#include <Inventor/events/SoLocation2Event.h>
#include <Inventor/manips/SoHandleBoxManip.h>
#include <Inventor/manips/SoTransformBoxManip.h>
#include <Inventor/manips/SoCenterballManip.h>
#include <Inventor/actions/SoBoxHighlightRenderAction.h>
#include <Inventor/draggers/SoDragPointDragger.h>
#include <Inventor/draggers/SoTranslate2Dragger.h>
#include <Inventor/nodes/SoNurbsCurve.h>
#include <Inventor/nodes/SoNurbsSurface.h>
#include <Inventor/nodes/SoComplexity.h>

38

#include <Inventor/SbColor.h>
#include <Inventor/SoPath.h>
#include <Inventor/SbLinear.h>
#include <Inventor/SbString.h>
#include <Inventor/SoPickedPoint.h>
#include <Inventor/SbViewportRegion.h>
#include <Inventor/engines/SoCompose.h>
#include <Inventor/nodes/SoProfileCoordinate3.h>
#include <Inventor/nodes/SoNurbsProfile.h>
#include <Inventor/nodes/SoLinearProfile.h>
#include <Inventor/nodes/SoFont.h>
#include <Inventor/nodes/SoProfileCoordinate2.h>
#include <Inventor/nodes/SoText3.h>
#include <Inventor/nodes/SoText2.h>
#include <Inventor/nodes/SoQuadMesh.h>
#include <Inventor/nodes/SoSpotLight.h>
#include <FL/Fl.H>
#include <FL/Fl_Button.H>
#include <FL/Fl_Window.H>

/* added for socket ********/
#include <arpa/inet.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <stdio.h>
#include <stdlib.h>
#include "cubes.h"
#include "springGraph.h"
#include "springJNDExp_cb.h"
#include "texture_callbacks.h"
#include "callbacks.h"
#include "comm_callbacks.h"
#include "teleop_callbacks.h"
#include "puma_callbacks.h"
#include "monitor_callbacks.h"
#include "expDOF_callbacks.h"
#include "exp_callbacks.h"

/***/
// Externed globals

SoTransform *springTrans; // spring motion transform.
// This stores current location
// of the flotor.

#define PI 3.14159265

int springNumber;
int springPointSetNumber;
int coilNumber;
int coilNurbsCurveNumber;
int cylNumber;
int meshNumber;

float pitch;

/***/

39

/*
Function: update_spring
Output: void
Input: SbVec3f* translation of haptic flotor and

SbVec3f* rotation of haptic flotor
Called from: cubes.C in graphics_callback()
Description: Uses the current location of the haptic
flotor to update the shape of the spring.

*/
void update_spring(SbVec3f translation, SbVec3f rotation, SbVec3f force, SbVec3f torque)
{
float P; // Vertical reaction force
float q; // Buckling factor
float Hz; // Horizontal reaction force along X axis
float Hx; // Horizontal reaction force along Z axis
float M1z; // Resisting moments
float M1x;
float M2z;
float M2x;

float siZu; // Angle made by upperbar ABOUT Z-axis, measured
// from X axis - Roll

float siXu; // Angle made by upperbar ABOUT X-axis, measured
// from Z axis - Pitch

float siYu; // Angle made by upperbar ABOUT Y-axis - Yaw

float si1X; // Upper spring centerline ends
float si1Z;
float si2X; // Lower spring centerline ends
float si2Z;

float L; // Compressed length of spring
float compressY; // Compression along Y-axis
float shearX; // Shear along X-axis
float shearZ; // Shear along Z-axis

int coilCount; // Counter for number of divisions in spring coil

float x = 0; // Temporary coordinate values for each division
float y = 0; // in the spring coil
float z = 0;

// Single character names are defined here for ease of use in formulaes
float d = wireDiameter;
float D = coilDiameter;
float G = shearModulus;
float E = youngModulus;

float Lvertical; // Compressed length along the vertical axis

float newx; // Coordinates after transformation of axes
float newy;
float newz;
float intery;

float barY; // Coordinates of upper end plate
float barX;
float barZ;

float forceX; // Force values as calculated by the control
// loop used to generate warnings when the values are
// too high

40

float forceZ;
float forceY;

float gamma; // Rigidity constant wrt compression
float alpha; // Rigidity constant wrt moment
float beta; // Rigidity constant wrt shear

// Calculate rigidity constants based on changes in physical
// parameters or rigidity constants
switch(springChange)
{
case 0: // Change in gamma
// beta and alpha are directly proportional to gamma,
// assuming D, E and G are constant
gamma = spring_gamma;
beta = gamma*E/G;
alpha = gamma*pow(D,2)/(4*G/E+2);
set_alpha(alpha);
set_beta(beta);
break;

case 1: // Change in alpha
alpha = spring_alpha;
beta = alpha*(4+2*E/G)/pow(D,2);
gamma = alpha*(4*G/E+2)/pow(D,2);
set_beta(beta);
set_gamma(gamma);
break;

case 2: // Change in beta
beta = spring_beta;
alpha = beta*pow(D,2)/(4+2*E/G);
gamma = beta*G/E;
set_alpha(alpha);
set_gamma(gamma);
break;

case 3: // Change in physical parameters
alpha = L0*pow(d,4)*E/(32*n*D*(1+E/(2*G)));
beta = L0*pow(d,4)*E/(8*n*pow(D,3));
gamma = L0*pow(d,4)*G/(8*n*pow(D,3));
set_alpha(alpha);
set_beta(beta);
set_gamma(gamma);
break;

}

if(reset_spring_flag)
{
reset_spring_scene();
reset_spring_flag = false;

}

// Identify how the upper end plate is moving and thereby determine
// the resulting shape of the spring centerline, coil and
// cylindrical helix
SoSeparator *upperBar = (SoSeparator *)SoNode::getByName("UpperBar");
SoTransform *upperBarTransform = (SoTransform *)SoNode::getByName("UpperBarTransform");
SoRotationXYZ *upperRotationX = (SoRotationXYZ *)SoNode::getByName("UpperRotationX");
SoRotationXYZ *upperRotationY = (SoRotationXYZ *)SoNode::getByName("UpperRotationY");
SoRotationXYZ *upperRotationZ = (SoRotationXYZ *)SoNode::getByName("UpperRotationZ");

// Define new coordinates of the spring centerline
SoCoordinate3 *newSpringCoords = new SoCoordinate3;
SoPointSet *newSpringPointSet = new SoPointSet;

41

// Define new coordinates of the spring coil
SoCoordinate3 *newCoilCoords = new SoCoordinate3;
SoNurbsCurve *newCoilCurve = new SoNurbsCurve;

SoSeparator *springCenterline = (SoSeparator *)SoNode::getByName("SpringCenterline");
SoPath *springPath = (SoPath *)SoNode::getByName("NewSpringCoords");

if(springPath == NULL)
{
SoCoordinate3 *springCoords = (SoCoordinate3 *)SoNode::getByName("SpringCoords");
springNumber = springCenterline->findChild(springCoords);

SoPointSet *springPointSet = (SoPointSet *)SoNode::getByName("SpringPointSet");
springPointSetNumber = springCenterline->findChild(springPointSet);

}

SoSeparator *springCoil = (SoSeparator *)SoNode::getByName("SpringCoil");
SoPath *coilPath = (SoPath *)SoNode::getByName("NewCoilCoords");

if(coilPath == NULL)
{
SoCoordinate3 *coilCoords = (SoCoordinate3 *)SoNode::getByName("CoilCoords");
coilNumber = springCoil->findChild(coilCoords);

SoNurbsCurve *coilCurve = (SoNurbsCurve *)SoNode::getByName("CoilCurve");
coilNurbsCurveNumber = springCoil->findChild(coilCurve);

}

SoMaterial *coilMaterial = (SoMaterial *)SoNode::getByName("CoilMaterial");

// Define new coordinates of the cylindrical helix
SoCoordinate3 *newOuterLayer = new SoCoordinate3;
SoQuadMesh *newQuadMesh = new SoQuadMesh;

SoSeparator *cylLayer = (SoSeparator *)SoNode::getByName("CylLayer");
SoPath *cylPath = (SoPath *)SoNode::getByName("NewOuterLayer");

if(cylPath == NULL)
{
SoCoordinate3 *outerLayer = (SoCoordinate3 *)SoNode::getByName("OuterLayer");
cylNumber = cylLayer->findChild(outerLayer);

SoQuadMesh *myQuadMesh = (SoQuadMesh *)SoNode::getByName("MyQuadMesh");
meshNumber = cylLayer->findChild(myQuadMesh);

}

/*
Get the translation (x,y,z) and rotation (roll, pitch, yaw) along the
graphical ZXY axes. The +Y axis is vertical, the +Z axis pointing AWAY
from you and +X axis pointing to your right as you look at this
screen. When the upper spring bar rotates such that its right end goes
down while its left goes up and vice versa the angle defined is roll -
rotation about Z axis. The angle it defines while rotating such that
it goes into the screen at an angle and out of the screen at an angle
it is pitch - rotation about X axis. Yaw is defineed by twist -
rotation about Y axis. Translation along the +Y axis is elongation and
along -Y axis is compression. Translation along X axis is shear and
translation along Z axis is shear in and out of the graphical 2D plane.

*/

/*

42

The above axes definitions are for the graphical world. In the haptic
world, the +Z axis is vertical, the +Y axis pointing AWAY
from you and +X axis pointing to your right as you look at this
screen. Hence the third value of SbVec3f translation of the form
(x,y,z) is compression, and the other two are shear. Roll, pitch and
yaw have to be suitably modified as well.

*/

/*
SbVec3f translation gives the translation of the flotor along XYZ
axes. If the flotor goes down, the third element gets a negative value
of its absolute vertical translation. When this is added to the
starting distance between the bars the current vertical distance is
obtained.

*/

/* rotation[i] are angles as defined by haptics world. siXu, siZu,
siYu are angles defined by graphics world. The latter are opposite in
sign to the theoretical theta.

*/

compressY = translation[2]*L0/flotor_depth; //-ve value if compression and
//+ve if elongation
shearX = translation[0]*L0/flotor_depth;
shearZ = translation[1]*L0/flotor_depth;

siXu = rotation[0]; // Pitch
siZu = -rotation[1]; // Roll
siYu = rotation[2]; // Yaw

forceX = force[0];
forceZ = force[1];
forceY = force[2];

// Euclidean distance between spring cenerline ends
L = sqrt(pow((L0+compressY),2)+pow(shearX,2)+pow(shearZ,2));
Lvertical = L0 + compressY;

si2Z = atan(shearX/Lvertical);
si1Z = si2Z - siZu;

si2X = atan(shearZ/Lvertical);
si1X = si2X - siXu;

// If forces are too high, display a warning
if(fabs(forceX) > 10 || fabs(forceZ) > 10 || fabs(forceY) > 50)
{
ui->excessForceWarn->show();

}
else
{
ui->excessForceWarn->hide();

}

// Compression
if(L <= L0 & L > 0)
{
P = gamma*(L0-L)/L;
q = sqrt((P/alpha)*(1+P/beta));
Hx = P*(si1Z+si2Z)/(L*P/(tan(q*L/2)*alpha*q)-2);
Hz = P*(si1X+si2X)/(L*P/(alpha*q*tan(q*L/2))-2);

43

// Value of H as L->L0 and P->0
if(L >= L0-1e-4)

{
Hx = -beta*(si1Z+si2Z)/(2*(1+beta*pow(L,2)/(12*alpha)));
Hz = -beta*(si1X+si2X)/(2*(1+beta*pow(L,2)/(12*alpha)));

}

M1z = (alpha*q*(Hx/P+si1Z)*(L0/L0)-Hx*L/sin(q*L))/tan(q*L/2);
M1x = (alpha*q*(Hz/P+si1X)*(L0/L0)-Hz*L/sin(q*L))/tan(q*L/2);

M2z = M1z + Hx*L;

M2x = M1x + Hz*L;

coilCount = 0;

newCoilCurve->knotVector.set1Value(1,0);

pitch=L0/n;

// Calculate the (x,y,z) values for each point on the spring coil
for(float i = 0; i <= n*2*PI; i+=0.1)

{

y = i*L/(n*2*PI);

x = (M1z*(tan(q*L/2)*sin(q*y) + cos(q*y) - 1) +
Hx*L*(-sin(q*y)/tan(q*L) + cos(q*y) + y/L - 1))/P;

z = (M1x*(tan(q*L/2)*sin(q*y) + cos(q*y) - 1) +
Hz*L*(-sin(q*y)/tan(q*L) + cos(q*y) + y/L - 1))/P;

// Transform the axes by si2 since lower end plate is held fixed
newx = x*cos(si2Z)+y*sin(si2Z);

intery = y*cos(si2Z)-x*sin(si2Z);

newz =-(z*cos(si2X)+intery*sin(si2X));

newy = intery*cos(si2X)-z*sin(si2X);

newCoilCoords->point.set1Value(coilCount, D*cos(i)/2 + newx, newy, newz + D*sin(i)/2);

coilCount++;

newCoilCurve->knotVector.set1Value(coilCount+1, coilCount);
newSpringCoords->point.set1Value(coilCount, newx, newy, newz);

}

newSpringPointSet->numPoints.setValue(coilCount);
newCoilCurve->numControlPoints = coilCount;
newCoilCurve->knotVector.set1Value(coilCount+2, coilCount+1);

}

// Elongation
else if(L > L0 & L > 0)
{
P = gamma*(L0-L)/L;
q = sqrt(-((P/alpha)*(1+P/beta)));
Hx = P*(si1Z+si2Z)/(-L*P/(tanh(q*L/2)*alpha*q)-2);

44

Hz = P*(si1X+si2X)/(-L*P/(alpha*q*tanh(q*L/2))-2);

// Value of H as L->L0 and P->0
if(L <= L0+1e-4)

{
Hx = -beta*(si1Z+si2Z)/(2*(1+beta*pow(L,2)/(12*alpha)));
Hz = -beta*(si1X+si2X)/(2*(1+beta*pow(L,2)/(12*alpha)));

}

M1z = ((Hx/P+si1Z)*alpha*q*(L0/L0)+Hx*L/sinh(q*L))/tanh(q*L/2);
M1x = ((Hz/P+si1X)*alpha*q*(L0/L0)+Hz*L/sinh(q*L))/tanh(q*L/2);

M2z = M1z + Hx*L;
M2x = M1x + Hz*L;

coilCount = 0;

newCoilCurve->knotVector.set1Value(1,0);

// Calculate the (x,y,z) values for each point on the spring coil
for(float i = 0; i <= n*2*PI; i+=0.1)

{
y = i*L/(n*2*PI);

x = (M1z*(-tanh(q*L/2)*sinh(q*y) + cosh(q*y) - 1) +
Hx*L*(-sinh(q*y)/tanh(q*L) + cosh(q*y) + y/L - 1))/P;

z = (M1x*(-tanh(q*L/2)*sinh(q*y) + cosh(q*y) - 1) +
Hz*L*(-sinh(q*y)/tanh(q*L) + cosh(q*y) + y/L - 1))/P;

// Transform the axes by si2 since lower end plate is held fixed
newx = x*cos(si2Z)+y*sin(si2Z);

intery = y*cos(si2Z)-x*sin(si2Z);

newz =-(z*cos(si2X)+intery*sin(si2X));

newy = intery*cos(si2X)-z*sin(si2X);

newCoilCoords->point.set1Value(coilCount, D*cos(i)/2 + newx , newy, newz + D*sin(i)/2);
coilCount++;

newCoilCurve->knotVector.set1Value(coilCount+1, coilCount);
newSpringCoords->point.set1Value(coilCount, newx, newy, newz);

}

newSpringPointSet->numPoints.setValue(coilCount);
newCoilCurve->numControlPoints = coilCount;
newCoilCurve->knotVector.set1Value(coilCount+2, coilCount+1);

}

// Move the upper end plate to the new position
barY = newy;
barX = newx;
barZ = newz;

upperRotationX->angle = angle_scaler*siXu;
upperRotationY->angle = angle_scaler*siYu;
upperRotationZ->angle = angle_scaler*siZu;
upperBarTransform->translation.setValue(barX, barY-L0/2, barZ);

45

int cylCount = 0;

SbVec3f* layer = new SbVec3f(0,0,-wireDiameter/2);

for(int i = 0; i < newCoilCoords->point.getNum(); i++)
{
newOuterLayer->point.set1Value(cylCount, newCoilCoords->point[i]+ *layer);
cylCount++;

}

layer = new SbVec3f(0,wireDiameter/(2*sqrt(2)),-wireDiameter/(2*sqrt(2)));

for(int i = 0; i < newCoilCoords->point.getNum(); i++)
{
newOuterLayer->point.set1Value(cylCount, newCoilCoords->point[i]+ *layer);
cylCount++;

}

layer = new SbVec3f(0,wireDiameter/2,0);

for(int i = 0; i < newCoilCoords->point.getNum(); i++)
{
newOuterLayer->point.set1Value(cylCount, newCoilCoords->point[i]+ *layer);
cylCount++;

}

layer = new SbVec3f(0,wireDiameter/(2*sqrt(2)),wireDiameter/(2*sqrt(2)));

for(int i = 0; i < newCoilCoords->point.getNum(); i++)
{
newOuterLayer->point.set1Value(cylCount, newCoilCoords->point[i]+ *layer);
cylCount++;

}

layer = new SbVec3f(0,0,wireDiameter/2);

for(int i = 0; i < newCoilCoords->point.getNum(); i++)
{
newOuterLayer->point.set1Value(cylCount, newCoilCoords->point[i]+ *layer);
cylCount++;

}

layer = new SbVec3f(0,-wireDiameter/(2*sqrt(2)),wireDiameter/(2*sqrt(2)));

for(int i = 0; i < newCoilCoords->point.getNum(); i++)
{
newOuterLayer->point.set1Value(cylCount, newCoilCoords->point[i]+ *layer);
cylCount++;

}

layer = new SbVec3f(0,-wireDiameter/2,0);

for(int i = 0; i < newCoilCoords->point.getNum(); i++)
{
newOuterLayer->point.set1Value(cylCount, newCoilCoords->point[i]+ *layer);
cylCount++;

}

layer = new SbVec3f(0,-wireDiameter/(2*sqrt(2)),-wireDiameter/(2*sqrt(2)));

for(int i = 0; i < newCoilCoords->point.getNum(); i++)
{

46

newOuterLayer->point.set1Value(cylCount, newCoilCoords->point[i]+ *layer);
cylCount++;

}

layer = new SbVec3f(0,0,-wireDiameter/2);

for(int i = 0; i < newCoilCoords->point.getNum(); i++)
{
newOuterLayer->point.set1Value(cylCount, newCoilCoords->point[i]+ *layer);
cylCount++;

}

// Update the coordinates of the scene
newQuadMesh->setName("NewQuadMesh");
newQuadMesh->verticesPerRow = newCoilCoords->point.getNum();

newQuadMesh->verticesPerColumn = 9;
cylLayer->replaceChild(meshNumber, newQuadMesh);

newSpringCoords->setName("NewSpringCoords");
springCenterline->replaceChild(springNumber, newSpringCoords);
newSpringPointSet->setName("NewSpringPointSet");
springCenterline->replaceChild(springPointSetNumber, newSpringPointSet);

newCoilCoords->setName("NewCoilCoords");
springCoil->replaceChild(coilNumber, newCoilCoords);

newCoilCurve->setName("NewCoilCurve");
springCoil->replaceChild(coilNurbsCurveNumber, newCoilCurve);

newOuterLayer->setName("NewOuterLayer");
cylLayer->replaceChild(cylNumber, newOuterLayer);

}

// This function is called whenever the coil diameter or wireDiameter of
// the spring changes
void reset_spring_scene()
{

float l = coilDiameter/2;
float w = coilDiameter/2;
float h = 0.5;

float vertices[24][3] =
{
{-l,-h,-w}, {l,-h,-w}, {l,h,-w}, {-l,h,-w},
{l,-h,-w}, {l,-h,w}, {l,h,w}, {l,h,-w},
{l,-h,w}, {-l,-h,w}, {-l,h,w}, {l,h,w},
{-l,-h,w}, {-l,h,w}, {-l,h,-w}, {-l,-h,-w},
{-l,-h,-w}, {l,-h,-w}, {l,-h,w}, {-l,-h,w},
{-l,h,-w}, {l,h,-w}, {l,h,w}, {-l,h,w}

};

SoCoordinate3 *newBarCoords = (SoCoordinate3*)SoNode::getByName("BarCoords");
newBarCoords->point.setValues(0, 24, vertices);

SoDrawStyle *newCoilDrawStyle = (SoDrawStyle*)SoNode::getByName("CoilDrawStyle");
newCoilDrawStyle->lineWidth = wireDiameter;

SoTransform *newLowerBarTransform = (SoTransform*)SoNode::getByName("LowerBarTransform");
newLowerBarTransform->translation.setValue(0, -(L0/2), 0);

SoTransform *newPlaneTransform = (SoTransform*)SoNode::getByName("PlaneTransform");

47

newPlaneTransform->translation.setValue(0,-(L0/2)-h,0);

SoTransform *newCoilTransform = (SoTransform*)SoNode::getByName("CoilTransform");
newCoilTransform->translation.setValue(0,-(L0/2)+h,0);

}

// This function is called in cubes.C to setup the spring scene
SoSeparator* init_springGraphics()
{

float numberOfTurns = n;

springTrans = new SoTransform;
rootSpring = new SoSeparator;
rootSpring->ref();

// Set up camera position
SoPerspectiveCamera *myCamera = new SoPerspectiveCamera;
SbVec3f cameraViewpoint;
cameraViewpoint.setValue(0.0, 0.0,90);
myCamera->position = cameraViewpoint;
SbVec3f origin;
origin.setValue(0.0, 0.0, 0.0);
myCamera->pointAt(origin);
rootSpring->addChild(myCamera);

// Set up lighting
SoLightModel *sceneLightModel = new SoLightModel;
sceneLightModel->model = SoLightModel::PHONG;
SoDirectionalLight *myFrontLight = new SoDirectionalLight;
SoDirectionalLight *myRearLight = new SoDirectionalLight;
SoSpotLight *mySpotLight = new SoSpotLight;
myFrontLight->direction.setValue(1, 1, 1);
myRearLight->direction.setValue(-1,-1,-1);
mySpotLight->direction.setValue(1, 0, 0);
mySpotLight->cutOffAngle.setValue(0.5);
mySpotLight->dropOffRate.setValue(0.7);
mySpotLight->on.setValue(TRUE);

rootSpring->addChild(sceneLightModel);
rootSpring->addChild(myFrontLight);
rootSpring->addChild(myRearLight);

// The objects in the scene are two cuboids for the spring
// ends, a spring centerline, a spring coil, and a cylindircal helix.
// A general cuboid is first defined
float l = coilDiameter/2; // Length of cuboid
float w = coilDiameter/2; // Width
float h = 0.5; // Height
float transDist = L0/2;

// Define a plane that acts as ground
SoSeparator *plane = new SoSeparator;
SoMaterial *planeMaterial = new SoMaterial;
planeMaterial->diffuseColor.setValue(0, 0, 0.95);
SoCube *ground = new SoCube();
ground->width.setValue(120);
ground->height.setValue(50);
ground->depth.setValue(1);

SoTransform *planeTransform = new SoTransform;
planeTransform->setName("PlaneTransform");

48

planeTransform->translation.setValue(0,-transDist-h,0);

SoRotationXYZ *planeRotation = new SoRotationXYZ;
planeRotation->axis = SoRotationXYZ::X;
planeRotation->angle = 1.57;

plane->addChild(planeMaterial);
plane->addChild(planeTransform);
plane->addChild(planeRotation);
plane->addChild(ground);
rootSpring->addChild(plane);

// Specify the vertices of the cuboid
static float vertices[24][3] =
{
{-l,-h,-w}, {l,-h,-w}, {l,h,-w}, {-l,h,-w},
{l,-h,-w}, {l,-h,w}, {l,h,w}, {l,h,-w},
{l,-h,w}, {-l,-h,w}, {-l,h,w}, {l,h,w},
{-l,-h,w}, {-l,h,w}, {-l,h,-w}, {-l,-h,-w},
{-l,-h,-w}, {l,-h,-w}, {l,-h,w}, {-l,-h,w},
{-l,h,-w}, {l,h,-w}, {l,h,w}, {-l,h,w}

};

static int numvertices[6] = {4, 4, 4, 4, 4, 4};

SoCoordinate3 *barCoords = new SoCoordinate3;
barCoords->setName("BarCoords");
barCoords->point.setValues(0, 24, vertices);

SoFaceSet *barFaceSet = new SoFaceSet;
barFaceSet->setName("BarFaceSet");
barFaceSet->numVertices.setValues(0,6, numvertices);

// Color for upper end plate
SoMaterial *upperMaterial = new SoMaterial;
upperMaterial->diffuseColor.setValue(1.0, 0.0, 0.0);

// Color for lower end plate
SoMaterial *lowerBarMaterial = new SoMaterial;
lowerBarMaterial->diffuseColor.setValue(0.0, 0.0, 1.0);

// Translate and rotate the end plates so that they sit at the ends
// of the spring
SoTransform *upperBarTransform = new SoTransform;
upperBarTransform->setName("UpperBarTransform");
upperBarTransform->translation.setValue(0,transDist,0);

SoRotationXYZ *upperRotationX = new SoRotationXYZ;
upperRotationX->setName("UpperRotationX");
upperRotationX->axis = SoRotationXYZ::X;
upperRotationX->angle = 0.0;

SoRotationXYZ *upperRotationY = new SoRotationXYZ;
upperRotationY->setName("UpperRotationY");
upperRotationY->axis = SoRotationXYZ::Y;
upperRotationY->angle = 0.0;

SoRotationXYZ *upperRotationZ = new SoRotationXYZ;
upperRotationZ->setName("UpperRotationZ");
upperRotationZ->axis = SoRotationXYZ::Z;
upperRotationZ->angle = 0.0;

49

SoTransform *lowerBarTransform = new SoTransform;
lowerBarTransform->setName("LowerBarTransform");
lowerBarTransform->translation.setValue(0,-transDist,0);

SoSeparator *upperBar = new SoSeparator;
upperBar->setName("UpperBar");
upperBar->addChild(upperMaterial);
upperBar->addChild(upperBarTransform);
upperBar->addChild(upperRotationX);
upperBar->addChild(upperRotationY);
upperBar->addChild(upperRotationZ);
upperBar->addChild(barCoords);
upperBar->addChild(barFaceSet);

SoSeparator *lowerBar = new SoSeparator;
lowerBar->setName("LowerBar");
lowerBar->addChild(lowerBarMaterial);
lowerBar->addChild(lowerBarTransform);
lowerBar->addChild(barCoords);
lowerBar->addChild(barFaceSet);

// Build the spring centerline
SoMaterial *pointMaterial = new SoMaterial;
pointMaterial->diffuseColor.setValue(0.0, 1.0, 0.0);

SoDrawStyle *pointDrawStyle = new SoDrawStyle;
pointDrawStyle->style = SoDrawStyle::POINTS;
pointDrawStyle->pointSize = 2.0;

SoTransform *pointsTransform = new SoTransform;
pointsTransform->setName("PointsTransform");
pointsTransform->translation.setValue(0,-transDist+h,0);

// Build the spring coil
SoMaterial *coilMaterial = new SoMaterial;
coilMaterial->setName("CoilMaterial");
coilMaterial->diffuseColor.setValue(1, 0.2, 1);

SoDrawStyle *coilDrawStyle = new SoDrawStyle;
coilDrawStyle->setName("CoilDrawStyle");
coilDrawStyle->style = SoDrawStyle::FILLED;
coilDrawStyle->lineWidth = 3*wireDiameter;

SoTransform *coilTransform = new SoTransform;
coilTransform->setName("CoilTransform");
coilTransform->translation.setValue(0,-transDist+h,0);

// Specify the values of the coordinates on the spring
// centerline.
SoCoordinate3 *springCoords = new SoCoordinate3;
springCoords->setName("SpringCoords");

// Specify the values of the coordiantes on the spring coil.
SoCoordinate3 *coilCoords = new SoCoordinate3;
coilCoords->setName("CoilCoords");

// Define the NURBS curve including the control points
// and a complexity.
SoComplexity *complexity = new SoComplexity;
complexity->value = 0.8;

SoNurbsCurve *coilCurve = new SoNurbsCurve;

50

coilCurve->setName("CoilCurve");
coilCurve->knotVector.set1Value(1,0);

SoNurbsSurface *coilSurface = new SoNurbsSurface;
coilSurface->setName("CoilSurface");
coilSurface->uKnotVector.set1Value(1,0);
coilSurface->vKnotVector.set1Value(1,0);

int coilCount = 0;

pitch=L0/(wireDiameter*numberOfTurns);

// Calculate the values of the spring centerline coordinates and use
// that to calculate the values of the spring coil
for(float i = 0; i <= wireDiameter*numberOfTurns*2*PI; i+=0.1)
{
springCoords->point.set1Value(coilCount, 0.0, pitch*i/(2*PI), 0.0);
coilCoords->point.set1Value(coilCount, coilDiameter*cos(i)/2,

pitch*i/(2*PI), coilDiameter*sin(i)/2);

coilCount++;
coilCurve->knotVector.set1Value(coilCount+1, coilCount);

}

coilCurve->knotVector.set1Value(coilCount+2, coilCount+1);
coilCurve->knotVector.set1Value(coilCount+3, coilCount+2);
coilCurve->numControlPoints = coilCount;

// Define the cylindrical helix
SoCoordinate3* outerLayer = new SoCoordinate3;
outerLayer->setName("OuterLayer");

int cylCount = 0;

// The cylindrical helix is made up of connected circles defined by eight
// equiangular points. This can be thought of as eight helical
// curves. First, specify the eight curves
SbVec3f* layer = new SbVec3f(0,0,-wireDiameter/2);

for(int i = 0; i < coilCoords->point.getNum(); i++)
{
outerLayer->point.set1Value(cylCount, coilCoords->point[i]+ *layer);
cylCount++;

}

layer = new SbVec3f(0,wireDiameter/(2*sqrt(2)),-wireDiameter/(2*sqrt(2)));

for(int i = 0; i < coilCoords->point.getNum(); i++)
{
outerLayer->point.set1Value(cylCount, coilCoords->point[i]+ *layer);
cylCount++;

}

layer = new SbVec3f(0,wireDiameter/2,0);

for(int i = 0; i < coilCoords->point.getNum(); i++)
{
outerLayer->point.set1Value(cylCount, coilCoords->point[i]+ *layer);
cylCount++;

}

layer = new SbVec3f(0,wireDiameter/(2*sqrt(2)),wireDiameter/(2*sqrt(2)));

51

for(int i = 0; i < coilCoords->point.getNum(); i++)
{
outerLayer->point.set1Value(cylCount, coilCoords->point[i]+ *layer);
cylCount++;

}

layer = new SbVec3f(0,0,wireDiameter/2);

for(int i = 0; i < coilCoords->point.getNum(); i++)
{
outerLayer->point.set1Value(cylCount, coilCoords->point[i]+ *layer);
cylCount++;

}

layer = new SbVec3f(0,-wireDiameter/(2*sqrt(2)),wireDiameter/(2*sqrt(2)));

for(int i = 0; i < coilCoords->point.getNum(); i++)
{
outerLayer->point.set1Value(cylCount, coilCoords->point[i]+ *layer);
cylCount++;

}

layer = new SbVec3f(0,-wireDiameter/2,0);

for(int i = 0; i < coilCoords->point.getNum(); i++)
{
outerLayer->point.set1Value(cylCount, coilCoords->point[i]+ *layer);
cylCount++;

}

layer = new SbVec3f(0,-wireDiameter/(2*sqrt(2)),-wireDiameter/(2*sqrt(2)));

for(int i = 0; i < coilCoords->point.getNum(); i++)
{
outerLayer->point.set1Value(cylCount, coilCoords->point[i]+ *layer);
cylCount++;

}

layer = new SbVec3f(0,0,-wireDiameter/2);

for(int i = 0; i < coilCoords->point.getNum(); i++)
{
outerLayer->point.set1Value(cylCount, coilCoords->point[i]+ *layer);
cylCount++;

}

float curveKnots[7] = {0,1,2,3,4,5,6};

SoPointSet *springPointSet = new SoPointSet;
springPointSet->setName("SpringPointSet");
springPointSet->numPoints.setValue(coilCount);

SoSeparator *springCenterline = new SoSeparator;
springCenterline->setName("SpringCenterline");
springCenterline->addChild(pointMaterial);
springCenterline->addChild(pointDrawStyle);
springCenterline->addChild(pointsTransform);
springCenterline->addChild(springCoords);
springCenterline->addChild(springPointSet);

SoSeparator *springCoil = new SoSeparator;

52

springCoil->setName("SpringCoil");
springCoil->addChild(coilMaterial);
springCoil->addChild(coilDrawStyle);
springCoil->addChild(coilTransform);
springCoil->addChild(complexity);
springCoil->addChild(coilCoords);
springCoil->addChild(coilCurve);

SoSeparator *springSurface = new SoSeparator;
springSurface->setName("SpringSurface");
springSurface->addChild(coilMaterial);
springSurface->addChild(coilTransform);
springSurface->addChild(complexity);
springSurface->addChild(coilCoords);
springSurface->addChild(coilSurface);

// Build picture by adding children
// rootSpring->addChild(springCenterline);
// rootSpring->addChild(springCoil);
rootSpring->addChild(lowerBar);
rootSpring->addChild(upperBar);

// After building the spring centerline and coil, build the
// cylindrical helix
SoSeparator *cylLayer = new SoSeparator;
cylLayer->setName("CylLayer");

// Define the material
SoMaterial *cylMaterial = new SoMaterial;
cylMaterial->diffuseColor.setValue(.78, .57, .11);
cylMaterial->shininess.setValue(100);
cylLayer->addChild(cylMaterial);
cylLayer->addChild(coilTransform);
cylLayer->addChild(outerLayer);

// Define the QuadMesh.
SoQuadMesh *myQuadMesh = new SoQuadMesh;
myQuadMesh->setName("MyQuadMesh");
myQuadMesh->verticesPerRow = coilCoords->point.getNum();
myQuadMesh->verticesPerColumn = 9;
cylLayer->addChild(myQuadMesh);

rootSpring->addChild(cylLayer);

return rootSpring;

}

53

