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ABSTRACT

This paper presents the development of a new deformable object
for haptic interaction in the form of a 3D helical spring. This haptic
and visual simulation is based on an analytical model of a qua-
sistatic spring. The model provides a real-time computationally
efficient method for rendering a deformable spring using a mag-
netic levitation haptic device. The solution includes equations for
reaction forces and resisting moments experienced during compres-
sion, elongation, shear and tilting of the spring. The system is used
to conduct psychophysical experiments that quantify human per-
ception and discriminability of spring stiffness magnitude with and
without vision and demonstrates the effectiveness of the device and
the simulation for rendering springs. Experiment results show that
spring magnitude perception follows a linear trend, and presence of
vision enables better discrimination between different spring stiff-
nesses.

1 INTRODUCTION

There has been substantial interest in the virtual environment com-
munity in the haptic and visual modeling of deformable objects [5],
[15]. One method of rendering elastic behavior in these models is
by using a network of “Mass-Spring” elements [6]. Such models
over-simplify the behavior of a deformable object. Another pop-
ular method is that of Finite Element Analysis (FEA) [2]. While
FEA accurately captures continuous and nonlinear deformable be-
havior, it is also computationally intensive and unsuitable for real-
time simulations. James and Pai have suggested pre-calculation
methods [8], [9] to make FEA models computationally efficient.
Such pre-calculated models have been used by Barbic̆ and James
[1] to identify the principal components of the deformation model
and combine them appropriately to render a range of deformations
and Mahvash and Hayward have used them in combination with in-
terpolation techniques [13]. While these methods render real-time
deformations, they compromise on accuracy and fidelity of the hap-
tic interaction. In this paper, a method of rendering real-time, re-
alistic and accurate haptic and visual 3D helical springs based on
a quasistatic analytical model is presented. Equations that define
the behavior of the spring during compression, elongation, shear
and tilting, and that predict the buckling point are provided. Such
a simulation is an initial step in the use of a magnetic levitation
haptic device (MLHD) to render deformable objects. The simula-
tion not only allows parameterization of the spring structure (e.g.,
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length; coil diameter), material (e.g., Young’s modulus) and inher-
ent qualities (e.g., compression rigidity constant), but also allows
such parameterization in real time. Users can feel the results of
parametric variations using free exploration and these variations are
mapped into perceptible properties. Here we consider how users
freely explore and perceive one fundamental property of a spring:
its stiffness.

Interaction with a deformable object using a MLHD is equivalent
to active exploration of a compliant object by contact with a rigid
surface. Srinivasan and LaMotte [14] showed that humans can be
quite effective at discriminating the compliance of objects and sur-
faces. Sensory information for this task comes from two sources:
the skin (cutaneous) and the muscles, tendons and joints (kines-
thesis). Srinivasan and LaMotte [14] also showed that kinesthesis
is required for the discrimination among levels of compliance when
springs are covered with a rigid surface. Furthermore, LaMotte [11]
showed that people can discriminate stiffness even while wielding
a tool when allowed active control. Vision also contributes to stiff-
ness perception, as shown by Wu et al. [16], sometimes compen-
sating for systematic bias in the haptic system. Indeed, Bingham et
al. [4] showed that vision alone is sufficient for identifying spring
motion, raising the issue of whether rendered forces will add to the
realism of a stiffness model in which visual feedback of spring mo-
tion is present.

We used two classic psychophysical procedures to characterize
perception of stiffness and to gauge the effectiveness of the spring
simulation. One is magnitude estimation, which assesses how in-
ternal responses to the stiffness co-vary with rendered values. The
other is the just noticeable difference procedure (JND), which as-
sesses how perceptible small differences in stiffness are and how
the perceptibility varies with the base stiffness value. One com-
mon finding in many perceptual domains is that the JND thresh-
old is a constant proportion of the base value, following what is
commonly called Weber’s law. Together, these measures describe
stiffness perception over a broad range of supra-threshold values
and at the limits of discrimination. Given the demands of fabricat-
ing real spring samples and the complexities of these procedures,
it would not be possible to do such a study without the rendering
capabilities of a MLHD, which makes it possible to generate high-
resolution stiffness values over a broad range in the context of the
ongoing experiment.

2 MAGNETIC LEVITATION HAPTIC DEVICE

A MLHD consists of a handle that is attached to a magnetically lev-
itated flotor. Three photodiode sensors and LED beacons are used
to monitor the position of the flotor. A MLHD provides maximum
stiffness, kmax, of approximately 25 N/mm in translation and 50.0
Nm/rad in rotation. This stiffness refers to the performance limit
in unilateral constraints while rendering rigid surfaces. The maxi-
mum force and the maximum moment generated ranges between 55
N to 140 N and between 6.3 Nm to 12.2 Nm respectively depend-
ing on the axis. These characteristics make a MLHD appropriate
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for rendering springs since it is necessary in some cases to simulate
high stiffnesses associated with “hard” springs and high moments
experienced during buckling. Interaction with a 3D spring involves
forces along the three axes of translation and moments about the
three axes of rotation and thus requires a device with 6 degrees of
freedom (DoFs). A MLHD satisfies this requirement since the 6-
DoF motion of its handle has a range approximately that of comfort-
able fingertip motion with the wrist stationary (±12 mm translation
and ±7◦ rotation in all directions). In addition, a MLHD provides
real-time position and orientation information with resolutions of
5-10 µm and high position bandwidth (≈125 Hz at ±3 dB) [3].

3 RENDERING A 3D HELICAL SPRING

An analytical quasistatic model proposed by T.M. Lowery [12] was
used to haptically and visually render the 3D helical spring. The
model assumes a close-coiled helical compression spring with wire
of circular cross section, and upper and lower end plates. Spring
weight, seat friction, end-coil effects and the dynamics of a spring
are not modeled by [12]. However, the inertia due to the 580 g mass
of the flotor brings out dynamic characteristics of a spring such as
oscillations with damping effect.

3.1 Haptic Rendering

The setup for the virtual simulation is that of a vertically positioned
spring with its lower end plate fixed to the ground, as shown in Fig.
1. The user deforms the spring by applying forces and moments to
the handle of a MLHD, which represents the upper end plate. The
servo loop runs at a rate of 1000 Hz and the same rate is used to
record the translation and rotation data of the handle. The coordi-
nate system used in this paper refers to the Y axis as the vertical
axis, while the X and Z axes define the horizontal plane. Subscripts
refer to the respective translation axes.

Figure 1: 3D view of undeformed spring.

The downward vertical motion range of the handle, V , is ap-
proximately 15mm in a MLHD. In the simulation, this depth cor-
responds to the free length of any spring, L0. Therefore, the verti-
cal and horizontal translations obtained from the position sensors,
SX ,Y,Z , are first transformed from real world coordinates to simula-
tion coordinates, TX ,Y,Z , by

TX ,Y,Z = (SX ,Y,Z)
(

L0

V

)
. (1)

Figure 2: 2D view of spring angles and translations under deforma-
tion.

This enables the user to move the upper end plate through L0 to
reach the lower end plate in the simulation and at the same time
reach the bottom of the motion range of the handle in the real world.
TY is negative during compression and positive during elongation.
The compressed length of the spring is calculated as the Euclidean
distance between the upper end point of the spring centerline, {TX ,
L0 + TY , TZ}, and the lower end point of the spring centerline, {0,
0, 0},

L =
√

T 2
X +(L0 +TY )2 +T 2

Z . (2)

The pitch and roll angles of the flotor handle are computed from the
sensor data. They are the angles of rotation of the upper end plate
of the spring about the Z and X axes respectively (ψX , ψZ). The
pitch and roll angles of the lower end plate are zero since it is held
fixed. The angles of the spring centerline ends (ψUx, ψLx, ψUz and
ψLz) are the angles made by the normals to the end points of the
spring centerline with the respective end plates. These angles are
computed by

ψLz,x = tan−1
(

TX ,Z

TY

)
, and (3)

ψUz,x = ψLz,x−ψZ,X , (4)

and are shown in Fig. 2.
The rigidity constants with respect to bending α , shear β , and

compression γ , are given by

α =
L0d4E

32nD
(
1+ E

2G
) , (5)

β =
L0d4E
8nD3 , and (6)

γ =
L0d4G
8nD3 , where (7)

α , β , and γ are the constants of proportionality relating applied
moment and resulting curvature, applied shear force and resulting
shear deformation, and applied vertical force and resulting com-
pression, respectively [See Table I for symbol meanings]. The ver-
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Table 1: Table of symbols

L0 Free length of spring
L Compressed length of spring
n Number of active coils
d Wire Diameter
D Mean Coil Diameter
E Young’s Modulus
G Shear Modulus
α Rigidity constant with respect to bending
β Rigidity constant with respect to shear
γ Rigidity constant with respect to compression
k Spring constant as defined by Hooke’s law
P Vertical reaction force
q Buckling factor

HX ,Z Horizontal reaction forces along
X and Z axes respectively

MUx,z Resisting moment at the upper end plate
about X and Z axes respectively

MLx,z Resisting moment at the lower end plate
about X and Z axes respectively

ψX ,Z Pitch angle of upper end plate =
Angle of rotation about X and Z axes respectively

ψUx,z Angles of the upper spring centerline end
about the X and Z axis respectively

ψLx,z Angles of the lower spring centerline end
about the X and Z axis respectively

V Maximum vertical translation of MLHD
TX ,Y,Z Translation along X , Y and Z axes respectively
SX ,Y,Z Sensor data on translation along

X , Y and Z axes respectively
Lbuckling Compressed length of the spring

at which buckling occurs
CX ,Y,Z 3D coordinates of a point on the spring centerline

tical reaction force is given by

P = γ
(L0−L)

L0
, (8)

which is the familiar spring equation based on Hooke’s law, where
spring constant

k =
γ

L0
. (9)

A feedforward force with magnitude equal to the weight of the flo-
tor and in opposite direction to gravity was added to this vertical
force. A spring buckles during compression when it deforms sud-
denly and nonlinearly along the vertical axis. The buckling factor
is given by

q =

√∣∣∣∣ P
α

(
1+

P
β

)∣∣∣∣. (10)

This factor predicts the buckling of parallel plates by

qL0 = 2π. (11)

At any point {CX ,CY ,CZ}, the vertical force, P, acts at a perpendic-
ular distance of CX ,Z ; the horizontal forces, HX ,Z , act at a perpen-
dicular distance of (L−CY ); the moments, MUz,x, act at the upper
end plate of the spring, as shown in Fig. 3. The moment, MZ,X ,
acting at any point {CX ,CY ,CZ} is given by

MZ,X = CX ,ZP+HX ,Z (L−CY )+MUz,x. (12)

Figure 3: 2D view of forces and moments.

By relating the moments MZ,X as defined in eqn.(12) with the rigid-
ity constant for bending (α), and by relating shear forces with the
rigidity constant for shear (β ), the expressions for the horizontal
reaction forces and the resisting moments experienced at the end
plates are derived. During compression, the horizontal reaction
forces are

HX ,Z =
P(ψLz,x +ψUz,x)

LP
qα tan( qL

2 ) −2
. (13)

and the resisting moments experienced at the upper end plate are

MUz,x =
[(

HX ,Z

P
+ψUz,x

)
αq−

HX ,ZL
sin(qL)

]
cot
(

qL
2

)
. (14)

The development of a realistic deformable platform required defi-
nition of spring behavior during elongation as well. The equations
defining elongation were derived as

HX ,Z =
P(ψUz,x +ψLz,x)

−LP
qα tanh( qL

2 ) −2
, and (15)

MUz,x =
[(

HX ,Z

P
+ψUz,x

)
αq+

HX ,ZL
sinh(qL)

]
coth

(
qL
2

)
. (16)

In both compression and elongation, the resisting moments at the
lower end plate are

MLz,x = MUz,x +HX ,ZL. (17)

As L→ L0,P→ 0 and HX ,Z→∞. The horizontal forces at this limit
were derived as:

HX ,Z =
−β (ψUz,x +ψLz,x)

2
(

1+ βL2
0

12α

) . (18)

The resisting moment experienced upon rotation about the
spring’s vertical axis (yaw) is not defined by the analytical model in
[12]. In this simulation it is modeled as a resisting torque propor-
tional to the rotation. The difference between [12] and our simula-
tion is that that the lower end plate in our simulation is not capable
of rotation. This issue is addressed by making the computed forces
in the simulation undergo a transformation of axes through ψLz and
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then through ψLx. Commutativeness of axes transformations is as-
sumed since the angles are small. The moments experienced at the
upper end plate as a result of these transformations are the sum of
MUz,x and MLz,x.

Using eqns. (8), (10) and (11), the compressed length at which
buckling occurs can be expressed as

Lbuckling = L0

[
1− β

2γ

(
−1+

√
1+

16π2α

βL2
0

)]
. (19)

A spring of lower stiffness has its buckling point higher than a very
stiff spring, relative to the lower end plate. The behavior of the
spring after buckling is not defined in [12]. A temporary solution
was to set the horizontal forces and moments to zero and to scale
down the vertical force. This renders an illusion of the spring bot-
toming out after buckling. Unseating of the spring, or slipping of
the lower end plate, does not occur in this simulation because the
lower end plate is held fixed.

A spherical boundary was implemented to keep the flotor within
its sensor range. The boundary was modeled as a proportional-
derivative controlled repulsive boundary. The derivative gain was
set as a variable depending on the stiffness of the spring. The an-
gle of rotation was limited to 2.86◦. This limitation was necessary
to keep the flotor within the sensor range in the cases where the
resisting moments are very high.

3.2 Calibration along the Vertical Axis
Accurate and realistic haptic rendering of a deformable object re-
quired calibration of the MLHD along the vertical axis. The flotor
of a MLHD has 6 coils. Each coil lies between a fixed magnet as-
sembly as shown in Fig. 4. Current is passed through each of these
coils. Lorentz forces are generated where the current loops of the
six actuator coils intersect with the magnetic flux loops. Hence, the
magnetic field and thereby the Lorentz forces obtained from the coil
currents are dependent on the position of the coil in the air gap. Due
to the large air gap in each magnet assembly these fields are not uni-
form in the given workspace, which leads to a nonlinear force vs.
displacement curve [3].

Figure 4: Single magnet assembly within a MLHD.

A physical setup was built to calibrate the MLHD along the ver-
tical axis, as shown in Fig. 5. The setup consisted of a micron reso-
lution linear stage holding a force gauge, aluminium structures and
face plates. The flotor was then levitated by commanding a feed-
forward force in a mode where all the axes besides the vertical axis
are locked. The feedforward force was set at a value greater than
that required to counter the weight of the flotor. The net weight of
the flotor and a pair of plates attached to the handle of the MLHD
was measured as 8.58N. The base of the setup was then placed on

Figure 5: Sketch of calibration setup.

top of the MLHD and the force gauge was lowered such that the
tip of the force gauge rested on the plate attached to the handle of
the MLHD. The purpose of the plate was to provide a rigid and flat
surface for the tip of the force gauge. The force gauge is then low-
ered by a millimeter at a time using the linear stage. The reading
on the force gauge and the values given by the position sensors of
the MLHD were noted. This readings were noted for a traversal of
14mm along the vertical axis. Two iterations of feedforward val-
ues of 10N and 12N each were made. This gave four force versus
displacement curves. Had the magnetic fields of the MLHD been
uniform in the given workspace, the force readings would have been
a constant value of the difference between the commanded feedfor-
ward force and the weight of the flotor. However, the error caused
by the nonlinearity was found to be approximately 10.87%.

Each of the four curves were first denormalised by subtracting
their means. Next, the nonlinear error curve was parameterized by
fitting a second-degree polynomial function to it. This normalised
polynomial is as shown in Fig. 6 and is expressed as

p(x) =−0.00451x2−0.02583x+0.19157, where (20)

x is the normalised displacement. In order to be applied to the run-
time unnormalised force values, p(x) was denormalised by adding
the mean value of each curve to itself. This mean value is unknown
during run-time. Hence, it was approximated as the commanded
feedforward force. When the denormalised polynomial curve is
inverted and multiplied by the calculated vertical force values, a
straight line at ∼1 is obtained. Hence, it is then multiplied by the
mean force value or the commanded feedforward force. The final
equation for calibration is

Pcalibrated =
P×FF

p(x)+FF
, where (21)

FF is the commanded feedforward force.

3.3 Visual Rendering
The spring coil was built in three stages: (1) definition of the spring
centerline based on Lowery’s model, (2) definition of a helical
curve based on the spring centerline, and (3) definition of a helix
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(a) (b) (c)

Figure 7: Building a visual spring: (a) Spring centerline (b) Helical curve (c) Helix with a circular cross-section.

Figure 6: Nonlinear Error Curve.

with a circular cross-section based on the helical curve, as shown
in Fig. 7. These definitions are used to update the graphics at a rate
of 30 Hz. The graphics of the 3D spring was rendered using Open
Inventor [7]. The transformation of the translation data captured
by the sensors, and the calculation of the vertical force, horizontal
forces and resisting moments are identical to those used for haptic
rendering. The 3D coordinates of each point in the spring centerline
during compression are given by

CY =
i∗L
2nπ

, i : 0→ 2nπ, and (22)

CX ,Z =
1
P

[
MUz,x

(
tan
(

qL
2

)
sin(qCY )+ cos(qCY )−1

)
+

+HX ,ZL
(
−sin(qCY )

tan(qL)
+ cos(qCY )+

CY

L
−1
)]

.

(23)

The coordinates during elongation were derived as

CX ,Z =
1
P

[
MUz,x

(
− tanh

(
qL
2

)
sinh(qCY )+ cosh(qCY )−1

)
+

+HX ,ZL
(
−sinh(qCY )

tanh(qL)
+ cosh(qCY )+

CY

L
−1
)]

.

(24)

These values also undergo a transformation of axes through ψLz
and then through ψLx. A helix of diameter D with each point in its
centerline having coordinates {CX , CY , CZ} is then defined. The
helix was rendered using a NURBS curve that coiled around the
spring centerline. The circular cross-section was rendered by con-
necting corresponding points of circles defined about each point in
the helical curve. The number of points in the spring centerline are
large enough to render a seamless helix and small enough to ren-
der a real-time simulation on an AMD XP 2000+ computer with a
nVIDIA GeForce4 TI 4600 graphics card.

4 PSYCHOPHYSICAL EXPERIMENTS

Implementation of an analytical model of the spring allowed for
easy modification of the spring parameters. Such a spring can be
defined either in terms of its physical properties (L0,n,d,D,E, and
G) or in terms of its rigidity constants (α,β ,γ). These values are
manipulated using Graphical User Interfaces as shown in Figs. 8
and 9. The panel in Fig. 8 also allows change in control parameters
such as proportional and dampening constants. These parameters
determine the translational and rotational limits of the spring and
the behavior of the spring at these limits.

It can be seen from eqns. (5), (6), and (7) that α and β vary
only with γ if D,G and E were assumed to be constant. Using this
property, two psychophysical experiments, Spring Stiffness Mag-
nitude Estimation and JND of Spring Stiffness, were implemented
using springs of varying γ . Two modalities were presented in each
experiment: vision and haptics (VH), where the subject could see a
graphic representation of the haptic spring, and haptics-alone (H),
where the window displaying the visual spring was hidden. The
visual spring did not change in appearance (e.g., coil thickness or
length) with change in γ to prevent the use of visual size and shape
cues. However, the visual spring does reflect the motion and de-
formable characteristics of the haptic spring. The subjects were
allowed to modify their view of the visual spring by zooming in
or out, rotating the spring about its vertical axis, and changing the
angle of inclination of the plane upon which the spring rested. The
subjects wore headphones playing white noise during the experi-
ments to minimize auditory influences. A warning in the form of
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a beep (audible over the noise) and printed message was given if
the subject applied a force against the virtual boundary sufficient to
push the flotor out of the device’s sensor range.

Figure 8: Panel for modifying physical parameters.

Figure 9: Panel for modifying rigidity constants.

4.1 Spring Stiffness Magnitude Estimation
Sixteen students (6 females and 10 males) from Carnegie Mellon
University served as subjects. Two were left-handed and the rest
were right-handed by self-report. Eight of the subjects started in
the VH modality and the rest started in the H modality, constituting
an order variable.

Twelve springs with γ ranging uniformly from 12.0 N to 48.0
N, corresponding to k ranging uniformly from 0.48 N/mm to 1.92
N/mm for L0 = 25.0 mm and natural frequency ranging from 4.57
Hz to 9.16 Hz for a flotor mass of 580 g, were presented to each
subject in random order. A subject started in a particular modal-
ity and went through three replications of the 12 randomly ordered
springs and was then presented with three replications in the other
modality. Each set of replications was preceded by a demo of 5
springs in the same modality, sampled from the range of γs experi-
enced and included the maximum and minimum values of γ . The
subject was asked to rate the springs using any number, with the rule

that a higher number meant that the spring felt stiffer. Only posi-
tive rational numbers were allowed. The range was self-selected
by the subject; analysis of the data included normalization to ac-
count for inter-subject variability in the range. With 3 replications
of 12 γ values in two modalities, there were 72 trials total, lasting
approximately 20 minutes.

4.2 Just Noticeable Difference of Spring Stiffness

Sixteen students (7 females and 9 males) from Carnegie Mellon
University served as subjects. Two were left-handed and the rest
were right-handed by self-report. Eight of the subjects started in
VH modality and the other eight started in H modality, constituting
an order variable.

A version of Kaernbach’s unforced weighted up-down adaptive
threshold estimation was used to rapidly determine the JND [10].
According to this technique, subjects are asked to compare between
a base γB and a comparison γC. A correct decision reduces the dif-
ference δ between γB and γC by stepsize D1. An incorrect deci-
sion increases δ by a stepsize of D2, and an indeterminate answer
increases δ by a stepsize of D3 < D2. These values were propor-
tional to D1 specified by the algorithm with a goal of converging
to an accuracy of 75%. The initial value of D1 was chosen as 25%
of the initial δ , which was chosen as 40% of γB; these values were
pre-tested to confirm convergence in a reasonable time. Under the
algorithm, as the experiment progresses, γC moves towards γB and
reaches an equilibrium after a certain number of reversals in the di-
rection of δ . The stepsizes are halved at the 2nd and 4th reversals.
Equilibrium is assumed after occurence of the 8th reversal and the
JND is calculated as the mean of all δ s between the 4th and the 8th

reversal.
The experiment consisted of 3 γBs of 17.0 N, 26.0 N and 35.0

N, corresponding to ks of 0.68 N/mm, 1.04 N/mm and 1.4 N/mm
for L0 = 25.0 mm and natural frequencies of 5.45 Hz, 6.74 Hz and
7.82 Hz for a flotor mass of 580 g. Four replications of alternating
modalities were conducted per subject. The base values followed
a non-repeating Latin-square order between replications, and the
order within a replication was randomly chosen from the 6 possible
permutations. The experiment was preceded by a demo of 4 springs
in each modality in mixed order, which together sampled the range
of γ and the types of comparisons (one spring obviously stiffer than
the other, one spring close but distinguishable from the other, two
very similar springs) the subject would experience. The experiment
took approximately 1 hour per subject, during which the subject felt
about 200 pairs of springs.

5 RESULTS

5.1 Spring Stiffness Magnitude Estimation

For the magnitude estimation task, the normalized magnitude rating
were analyzed with an ANOVA on modality (2, VH and H), order
(2: VH first; H first), and γ (12). The effect of modality did not
approach significance [F(1, 14) < 0.02, p = 0.88] nor was the effect
involving order significant [F(1, 14) < 0.823, p = 0.198]. The sole
effect was that of γ [F(11, 154) = 13.57, p < 0.001]. This reflected
an increase in judged magnitude with rendered γ that was essen-
tially linear (R2 for linear trend = 0.983), as shown in Fig. 10. The
magnitude estimation data follows the power law with an exponent
of 0.925.

The positions of the handle and forces applied by the subjects
during the experiment were recorded at 1000 Hz. From these data,
the variables of mean velocity, acceleration and force along the ver-
tical axis were analyzed with an ANOVA on γ (12), and modality
(2, VH and H). The effect of γ was clearly seen in the variables of
mean velocity [F(11,77) = 9.25, p < 0.001], acceleration [F(11, 77)
= 3.73, p < 0.001], and force [F(11,77) = 11.92, p < 0.001] along
the vertical axis as shown in Figs. 11 - 13. Specifically, velocity
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Figure 10: Plot of perceived γ vs. real γ in Vision+Haptics and
Haptics-alone modalities.

and acceleration are inversely proportional and force is directly pro-
portional to the rendered γ . All three variables show linear trends
with respect to γ (R2 for linear trend = 0.928, 0.718, and 0.946,
respectively). However, these three variables were not affected by
modality.

Figure 11: Plot of mean velocity vs. real γ in Vision+Haptics and
Haptics-alone modalities.

5.2 Just Noticeable Difference of Spring Stiffness
For the JND task, the threshold values were analyzed with an
ANOVA on modality (2, VH and H), γB (3), and order (2: VH first;
H first). This analysis showed effects of modality [F(1, 14 = 11.94,
p = 0.004] and γB [F(2, 28) = 23.01, p < 0.001] as shown in Fig.
14, but no significant effect involving order.

The hypothesis that the JND is a constant fraction of γB for each
modality would predict a modality by γB interaction, which ap-
proached significance [F(2, 28) = 3.10, p = 0.061]. In a subsidiary
analysis testing this hypothesis, it was found that JND expressed

Figure 12: Plot of mean acceleration vs. real γ in Vision+Haptics and
Haptics-alone modalities.

Figure 13: Plot of mean force along vertical axis vs. real γ in Vi-
sion+Haptics and Haptics-alone modalities.

as a proportion of γB was statistically invariant across γB values for
both the VH [F(2,30) = 1.46, p = 0.25] and H conditions [F(2,30)
= 0.80, p = 0.46]. The average JND as a proportion of γB, i.e., the
“Weber fraction,” was 14.2% for VH versus 17.2% for H, and these
differed reliably [t(15) = 3.30, p = 0.005 (two-tail)].

The variables of mean velocity, acceleration and force along the
vertical axis were analyzed with an ANOVA on γB (3), and modality
(2, VH and H). The findings were that velocity shows only an effect
of γB [F(2,12) = 5.13, p = 0.025], acceleration shows no effect of γB
or modality, and force shows an effect only of γB [F(2,12) = 13.18,
p = 0.001].

6 CONCLUSIONS

From the stated results, it was found that perceived stiffness in-
creased linearly with rendered stiffness across the full range studied
here. Clearly, participants in the experiment were able to discrim-
inate and evaluate the rendered stiffness well. The importance of
kinesthesis is demonstrated by the finding that as the springs get
stiffer, the subjects apply more force and move the spring more
slowly. Kinesthesis refers to perception of forces from muscle, ten-
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Figure 14: Bar graph of threshold values for different γBs in Vi-
sion+Haptics and Haptics-alone modalities.

don, and joint receptor input. This means that the level of active
control of the spring varied with the rendered γ and implies that
it helped in perception of stiffness. Moreover, visual information
did not modulate the judged stiffness value, indicating that it relied
completely on the haptic rendering.

In contrast, although vision did not affect the sense of stiffness,
visual cues did improve people’s ability to discriminate between
two stiffness values at the difference threshold. The differential
stiffness required to discriminate between two springs increased by
over 20% if vision was eliminated. The findings that kinesthetic
responses in the JND experiment depended only on γB and not on
modality further imply that visual cues were used to improve the
performance in the task of discriminating between springs. A note-
able finding was the value of Weber fraction for spring stiffness as
14.2% or 1/7 with both visual and haptic sensory information, and
17.2% or 1/5.8 with haptic sensory information alone.

During debriefing of subjects, many of them stated that they ex-
plored the spring using vertical oscillatory up and down motions,
which agrees with our findings and is predicted in [14]. Some
commented that they started making their decisions using a certain
strategy, most often compression, and if the comparisons became
difficult, they tried an additional strategy such as elongation. The
finding that visual cues helped in discrimination suggests that vi-
sual observation of the spring’s behavior was one such additional
strategy. These visual observations would include the frequency of
the spring’s oscillation after compression or elongation, the buck-
ling length, and the height to which the spring can be elongated.
This difference in the use of visual information can be attributed to
the precision requirements of the task: In the magnitude estimation
experiment, the subject was asked to report the subjective stiffness
of each spring in isolation. Differences in the springs were supra-
threshold, and no discrimination was required. On the other hand,
the task of the JND experiment required fine discriminations, and
visual cues clearly added to the discriminative information avail-
able.

Almost all subjects commented that the haptic and visual simula-
tions were very realistic. Neither the range of motion of the MLHD
nor the inertia of the flotor appears to have affected cases with lower
values of γ , given that the exploration data do not show discontinu-
ities. These results demonstrate the effectiveness of a MLHD in
rendering a deformable spring.

7 FUTURE WORK

An improved haptic and visual model for post-buckling spring be-
havior would increase the effectiveness and realism of the simula-

tion. Also, an increase in the limit on the angle of rotation would
allow greater exploration of the spring’s characteristics. It would
be interesting to investigate how people perceive the change in a
spring’s characteristics, such as stiffness, with respect to changes in
physical parameters (L0,n,d,D,E, and G) and the two other rigid-
ity constants of the spring (α,β ). Comparison of the results of the
psychophysical experiments with virtual springs to parallel experi-
ments with real springs is an important further step. An additional
psychophysical experiment using virtual visual springs alone would
contribute toward our understanding of the role of visual cues in
perception of spring stiffness.

The simulation of the 3D spring can be used for educational pur-
poses to develop a “feel” for the role of different materials and
structural parameters in determining the stiffness and behavior of
a helical spring. This work is a concrete example of the ability of a
MLHD to render a deformable object based on an analytical model
and to quantify human perception of its stiffness.

ACKNOWLEDGEMENTS

This work was partially supported by National Science Foundation
grant IIS-0413085. V. Varadharajan was partially supported by a
Google Anita Borg scholarship. The authors thank Ben Brown for
his assistance with the spring model.

REFERENCES

[1] J. Barbic and D. L. James. Real-time subspace integration of st.venant-
kirchhoff deformable models. In ACM Transactions on Graphics
(ACM SIGGRAPH 2005), 2005.

[2] K. Bathe. Finite Element Procedures. Prentice Hall, New Jersey, 1996.
[3] P. J. Berkelman and R. L. Hollis. Lorentz magnetic levitation for

haptic interaction: Device design, performance, and integration with
physical simulations. International Journal of Robotics Research, Vol.
19, No. 7:644–667, July 2000.

[4] G. P. Bingham, R. C. Schmidt, and L. D. Rosenblum. Dynamics and
the orientation of kinematic forms in visual event recognition. Journal
of Experimental Psychology, Vol. 21, No. 6:1473–1493, 1995.

[5] M. de Pascale, G. de Pascale, and D. Prattichizzo. Haptic and graphic
rendering of deformable objects based on gpus. In IEEE 6th Workshop
on Multimedia Signal Processing, 2004.

[6] A. Frisoli, L. F. Borelli, C. Stasi, M. Bellini, C. Bianchi, E. Ruffaldi,
G. D. Pietro, and M. Bergamasco. Simulation of real-time deformable
soft tissues for computer assisted surgery. The International Journal of
Medical Robotics & Computer Assisted Surgery, 1, Issue 1:107–113,
2004.

[7] S. Graphics, Inc., . E. A. Ave., Sunnyvale, CA, and USA. Open inven-
tor, http://oss.sgi.com/projects/inventor/.

[8] D. L. James and D. K. Pai. Accurate real time deformable objects. In
SIGGRAPH 99 Conference Proceedings, pages 65–72, 1999.

[9] D. L. James and D. K. Pai. A unified treatment of elastostatic and
rigid contact simulation for real time haptics. Haptics-e, the Electronic
Journal of Haptics Research, 2, No. 1, 2001.

[10] C. Kaernbach. Adaptive threshold estimation with unforced-choice
tasks. Perception and Psychophysics, Vol. 63:1377–1388, 2001.

[11] R. H. LaMotte. Softness discrimination with a tool. Journal of Neu-
rophysiology, Vol. 83:1777–1786, 2000.

[12] T. M. Lowery. How to predict buckling and unseating of coil springs,
pages 56–60. McGraw-Hill Book Company, 1961.

[13] M. Mahvash and V. Hayward. Haptic simulation of a tool in con-
tact with a nonlinear deformable body. In IS4TM: Int’l Symp. Surgery
Simulation and Soft Tissue Modelling, pages 311–320. Springer Ver-
lag, 2003.

[14] M. A. Srinivasan and R. H. LaMotte. Tactual discrimination of soft-
ness. Journal of Neurophysiology, Vol. 73, No. 1:88–101, 1995.

[15] P. Volino, P. Davy, U. Bonanni, C. Luible, N. Magnenat-Thalmann,
M. Mkinen, and H. Meinander. From measured physical parameters
to the haptic feeling of fabric. The Visual Computer: International
Journal of Computer Graphics, Vol. 23, Issue 2:133–142, 2007.

[16] W. Wu, C. Basdogan, and M. A. Srinivasan. Visual, haptic, and bi-
modal perception of size and stiffness in virtual environments. ASME
Dynamic Systems and Control, DSC-Vol. 67:19–26, 1999.

64


