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Abstract— This paper proposes an approach to robust state
estimation for mobile robots with intermittent dynamics.
The approach consists of identifying the robot’s mode of
operation by classifying the output of onboard sensors into
mode-specific contexts. The underlying technique seeks to
efficiently use available sensor information to enable accurate,
high-bandwidth mode identification. Context classification is
combined with multiple-model filtering in order to signifi-
cantly improve the accuracy of state estimates for hybrid
systems. This approach is validated in simulation and shown
experimentally to produce accurate estimates on a jogging
robot using low-cost sensors.
Index Terms— State Estimation, Classification, Multiple-
Model Filtering, Hybrid Systems

I. I NTRODUCTION

Robust state estimation is a key enabling technology for
reactive robotic systems. Mobile robots traversing rough
terrain often exhibit complex intermittent dynamics that are
difficult to model accurately and thus limit the performance
of state estimation filters. Hybrid systems may frequently
switch between modes of operation and experience com-
plex transients during mode transitions. Transitions may
occur at rates similar to the bandwidth of onboard sensors
and cause traditional filters to diverge. These considerations
motivate the construction of estimation systems which can
efficiently make use of all available sensor data to reliably
adapt to the current operating mode and generate accurate
state estimates.
This paper presents a framework to take advantage of all
measurements to capture as much information as possible
about the dynamics causing the robot’s observed behavior.
Simulations of a bouncing ball show that the framework
significantly increases the accuracy of estimating the balls’
height. Experiments are also conducted on RHex, a highly
mobile six-legged robot which locomotes by rotating its
half-circle shaped compliant legs. Careful synchronization
of leg rotations produce different tripod gaits, enabling
the robot to walk, jog and run [1]. Of particular interest
is the estimation of RHex’s state while jogging, as the
gait produces complex dynamics with alternating flight
and stance phases. The challenge is to rely on fairly
inexpensive onboard sensors such as accelerometers to
accurately estimate the height of the robot in real time.
The approach involves building an information processing
system that identifies a robot’s current dynamical context.
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Fig. 1. Flight and stance contexts correspond to data generated
by acceleration and motor power sensors while the robot operates in
these modes. The flight context corresponds to measurements of flight
conditions, such as calibrated accelerations close to−g and low motor
power consumption. Conversely, the stance context corresponds to positive
accelerations (resultant of ground reaction and gravity) and high power
consumption. RHex pictures courtesy of Haldun Komsuoḡlu.

Contexts correspond to a classification of data generated
by onboard sensors when the robot operates in specific
modes. Fig. 1 shows an example of two contexts that
correspond to a legged robot that alternates flight and
stance modes. The mode of operation can be identified
by positively classifying current sensor data in one of the
available contexts. The classification seeks to incorporate
as much available information as possible in order to
identify the modes at a bandwidth comparable to that of
onboard sensors. Applied to hybrid systems, the mode
identification mechanism can be combined with traditional
multiple-model filters to help select accurate models and
significantly improve the accuracy of state estimates.
With technological and scientific advances, the locomotion
capability and complexity of mobile robots is increasing.
Fortunately, robot behavior can often be approximated with
simple models that abstract the complex robot-environment
interactions [2]. More formally, consider the space of all
robot states,Q, and the spaceQm of states that the simple
model can express. Generallydim (Qm) < dim (Q), and
Qm is the image of the mapπQ : Q → Qm.
The sensor spaceS is the set of measurements produced
by mapping the statex ∈ Q to observationsy ∈ S through



g : Q → S. It is often the case with mobile robots that
sensors measure components of the robot state that are not
components of the model state. Hence, sensor measure-
mentsy are mapped to measurementsym ∈ Sm through
πS : S → Sm, where Sm is the set of measurements
that are compatible with the model. In a sense,ym is a
measurement of the model state described by the mapping
h : Qm → Sm. The following commutativity diagram
summarizes the relationships amongQ, Qm, S andSm:

Q
g

−→ S

↓πQ ↓πS

Qm
h

−→ Sm

II. RELATION TO PREVIOUS WORK

The approach for context-based state estimation uses clas-
sification techniques to recognize robot dynamics and
multiple-model filtering to estimate the state. These tech-
niques are extended beyond their traditional application
domain of machine vision and fault detection to address the
intermittent and continuously changing dynamics of mobile
robots.

A. Multiple-model filtering

State estimation for hybrid systems is a problem long
addressed by the scientific community, with particular
emphasis on the fields of aircraft fault detection and radar
target tracking (e.g. [3], [4], [5], [6], [7]). Some research
in the robotics community is adopting multiple-model
approaches for fault detection in mobile robots ([8], [9]).
However, little attention has been paid to the specifics of
estimating the state of robots with hybrid dynamics.
Conventional multiple model estimators based on the
Kalman filter framework such as the Interacting Multi-
ple Models (IMM) update multiple filters in parallel and
consolidate their output into a state estimate [10], [11].
These techniques have two disadvantages. The first is the
necessity of running multiple filters in order to capture
mode transitions. This can be computationally expensive,
as the number of filters grows at least quadratically with
the number of modes. The second disadvantage is the
sub-optimal accuracy of the estimate in the special case
where the mode is identified unambiguously. This case
calls for only updating the filter corresponding to the iden-
tified mode, and not averaging its output with knowingly
inaccurate estimates from other filters, as this would lower
the quality of the output. However, IMM-like techniques
require that the complete bank of filters be updated in
order to evaluate the accuracy of the model set. As a
consequence, they cannot deactivate unnecessary filters and
still decide when to reactivate them.
The proposed approach attempts to remedy these problems.
It provides a technique that turns off irrelevant filters and
correctly re-initializes them when they become accurate.
This saves computational cost and most importantly avoids

sub-optimal estimates when the mode is identified unam-
biguously.

B. Classification

Context identification through classification is used in the
computer vision community to enhance object recognition,
and in the robotics community to adapt sensor parameters
to the environment, assess the accessibility of a terrain and
even build motion models [12], [13], [14], [15].
The essentially geometric classification effective in ma-
chine vision problems assumes that changes in signals are
slow [12]. Classification of dynamic data is addressed by
the robotics community, but under the assumption that the
world can be described with a set of discrete, static states
[13]. Techniques that do account for continuously changing
states assume that the dynamics are time-invariant [15].
In summary, available techniques assume that either no
dynamics are involved, or that the dynamics do not change
with time.
When applied to field robots, classification cannot rely
on these assumptions because robot dynamics continually
alter sensor output. Therefore, the advocated approach for
context identification seeks to increase the bandwidth of
classification by incorporating as much sensor information
as possible. In addition, it accounts for time varying dynam-
ics by combining classification and multiple-model filtering
to capture dynamics that could no longer be classified with
available contexts.

III. C ONTEXT-BASED STATE ESTIMATION

The concept of context-based state estimation is to iden-
tify robot operating modes by classifying onboard sensor
data into contexts that correspond to specific modes of
operation. Context classification essentially uses sensor
information to build statistical models that recognize sys-
tem dynamics. Assuming the availability of models that
describe the different dynamics of a hybrid system, this
information helps estimators choose appropriate models for
state estimation.
A naive approach to state estimation would be to attempt
to compute the state directly fromπ−1

Q ◦h−1 ◦πS : S → Q.
However,πQ andh are generally not invertible, so system
state is estimated with filters that process model prediction
and sensor information mapped byπS . Since πS maps
sensor output to measurements compatible with the model,
it may discard some information. The simpler the model
and the greater the complexity of the dynamics, the less
information is available to the filter and the longer it will
take to converge. In contrast, context classification does
not necessarily depend on complex models and instead
seeks to efficiently incorporate all available information.
Thus, modes can be identified accurately and at bandwidth
comparable to that of onboard sensors. These advantages
compel the use of classification rather than multiple-model
filtering for mode identification. Context classification pro-
vides multiple-model filters with accurate, high-bandwidth



mode identification which helps improve their convergence
rate and the accuracy of their state estimates.

A. Context Predicates and Contexts

Sensor output that is classified into contexts is called a
context predicate, as it helps identify the current context.
Context predicates can also be constructed from processed
sensor data (e.g. IMU output), state estimates from a filter,
or filter components (e.g. residual).
Contextsare defined as the set of all predicate values
that correspond to specific modes of operation. Different
contexts are assumed to correspond to modes of operation
with distinct dynamics, so dynamics are uniquely mapped
to their corresponding context under the presumption that
the set of predicates is sufficiently rich to ensure that
contexts do not overlap.
Contexts are constructed by operating the robot in different
modes while collecting predicate values. The collection
of predicates corresponding to each mode is a bounded
set inS that constitutes a context. Future predicate values
are expected to fall within the context’s bounds when the
corresponding mode is in operation. Thus, a robot’s mode
can be identified by classifying current predicates within
available contexts.
To illustrate the concept, consider RHex executing a jog-
ging gait, with onboard sensors measuring acceleration and
power consumption. During the flight phase, the measured
acceleration should be close to gravity (−g) with little
motor power consumed. During stance, the legs should
produce a positive acceleration and consume additional
power. This reasoning can be formalized by classifying
the acceleration and the power consumption predicates into
flight and stance contexts, as shown in Fig. 1. The phase
of RHex’s gait could be identified by comparing current
values of the predicates to the two contexts. Whereas
additional contexts that capture modes such as uneven
leg touchdown and foot slippage may be able to describe
the dynamics more accurately, for clarity this paper only
considers two modes. This is sufficient to evaluate the
effectiveness of a collection of simple models at capturing
complex behavior.

B. Multiple-Model Filtering

As introduced in Section II-A, the leading multiple-model
estimation technique is the IMM. Each IMM iteration starts
with the assumption that any mode could have been in
effect at timet − 1, and any mode could be in effect at
time t. For a system withN modes, a bank ofN2 filters
is updated and the output of all filters is consolidated.
Algorithm 1 details the steps involved in an IMM cycle.
Here,(i, j) ∈{set of modes};filteri is based on the model
of mode i; it represents the hypothesis that modei is in
effect at timet; xi,j is the state predicted byfilteri and
corresponding to the sequence(it, jt−1); r is the residual;
and S and P are the innovation and process covariances,

Algorithm 1 Steps of an IMM update [10]
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Fig. 2. A two-mode IMM spawnsN2
= 4 filters, one for each mode

sequence. Their output is consolidated to form the state estimate.

respectively. Fig. 2 illustrates the cycle for a two-mode
system (FF = Free Flight; St = Stance).
When the context predicates fall within the bounds of a
context, the corresponding mode is identified unambigu-
ously and filters should rely on the corresponding model
to estimate the state, at the exclusion of other inaccurate
models. However, IMMs do not discard knowingly inac-
curate estimates, which leads to suboptimal consolidated
states.
Two modifications of the IMM alleviate this problem. The
first is to change the transition probabilities,Ti,j , in (2) as
a function of the mode. If modei is recognized as being
in operation, andj represents all other modes, then set
Ti,j = Ti,i = 1 and Tj,i = Tj,j = 0. This means that
transitioning into the identified mode and staying in it has
a probability of one, and transitioning into a wrong mode
and staying in it has a probability of zero. As expected,
this producesProbi = 1 andProbj = 0.



The second modification is to setx = xi = xi,i. This
formalizes the observation that once the system is in the
mode, it is expected to remain in it until a change of context
is detected. In other words, the only valid hypothesis is
(it, it−1), and since different modes correspond to distinct
dynamics, the output offilteri (xi) in (1) is not combined
to other estimates and instead constitutes the sole output
of the IMM. By ignoring the contribution of inaccurate
mode states, the accuracy of the consolidated state is not
decreased unnecessarily. In addition, ignored filters can
now be deactivated with no impact on state estimates.
For example, when the two-mode system of Fig. 2 is in
flight, only xFF,FF is updated while the other filters are
deactivated.
When the context can no longer be identified unambigu-
ously, all filters can be restarted and the IMM resumes
nominal operation. The output of the filters are consol-
idated (Equations 4 and 6), the mode probabilities are
computed (Equations 3 and 5), and the mode transition
point estimated (when the probability of one mode exceeds
that of all others). Thus, context-based filtering combines
the advantage of two techniques. Classification provides
accurate mode identification when it is applicable, and
multiple-model filtering estimates mode transition points
when no other identification means are available.

IV. SIMULATION RESULTS

As a first step towards robot deployment, context-based
state estimation is implemented on a simulated hybrid
system. The setup consists of an elastic bouncing ball that
alternates flight and stance dynamics:

ẍ =

{

−g Ballistic Projectile
K (x − l0) − g Loss-less Mass-Spring System

where the statex is height,g is the acceleration due to
gravity andK andl0 are the ball’s effective spring constant
and rest length, respectively. The task is to estimate the
ball’s height and velocity using the flight and stance models
and a noisy height sensor.

A. Conventional IMM

The initial implementation deploys the conventional IMM
of Fig. 2. For lack of better information,Ti,j =
1

2
,∀i, j ∈{FF, St}. Four filters are updated for this two-

mode system, one per mode sequence(it, jt−1). Equation 1
outputs four statesxi,j , which are consolidated through (4)
and (6) intox, the ball state estimate (Fig. 3). Over10s

of simulation and one complete bounce cycle, the RMS
error for position estimates is6.34 cm and for velocity
estimates is15.5058 m/s. The poor accuracy results from
incorporating inaccurate stance estimates during flight and
flight estimates during stance.

B. Context-Based IMM

To address this problem, a flight and a stance contexts
are introduced. The predicate is the height of the ball as
estimated by the IMM. This choice is motivated by the
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Fig. 3. State estimates obtained with a conventional IMM leadto RMS
errors of 6.34 cm and 15.5058 m/s for position and velocity estimates,
respectively. Modifications to the IMM discard knowingly inaccurate
estimates and reduce RMS errors to0.13 cm and0.0119 m/s.

observation that when the ball is at high altitude, it is
known to be in flight, and when it is compressed, it is
known to be in stance. Thus, classifying the ball’s height
as high (flight) or low (stance) is a rational approach at
recognizing the dynamics.
The classification fails in the immediate vicinity of touch-
down, x = l0 ± δ, with δ ¿ l0, where it is unclear when
the ball transitions from one mode to the other. Therefore,
the contexts are defined as follows:

• Flight Context:x > l0 + δ

• Stance Context:x < l0 − δ

• Unidentified Context:l0 − δ < x < l0 + δ

Pseudo code for the modified IMM is provided in Al-
gorithm 2. When the ball is recognized to be in flight
(x > l0 + δ) or in stance(x < l0 − δ), only the correspond-
ing filterFF (xFF ) or filterSt (xSt) is updated. When



Algorithm 2 IMM Modifications

for i ∈ {FF, St}, j = i{ for i ∈ {FF, St}, j = i{
if (identified mode =i){ if (flagi){
Ti,j = Ti,i = 1 updatefilteri (xi)
Tj,i = Tj,j = 0 if (flagj){
x = xi = xii updatefilteri (xj)}}
flagi = T, flagj = F }} if (flagj){

if (no mode identified){ updatefilterj (xj)
for i ∈ {FF, St}, j = i{ if (flagi){

if {flagi = F}{ updatefilterj (xi)}}
xi = xj = xii }
Pi = Pj = Pii}}

flagFF = flagSt = T

if (ẋ < 0){i = St; j = FF }
else{i = FF ; j = St}
Ti,j = 0.7; Tj,j = 0.3
Ti,i = 1; Tj,i = 0}

the context is unidentified, all four filters are updated. The
transition probabilities in (2) are adjusted so that when the
ball is descending(ẋ < 0), the probability of transitioning
into stance is greater than the probability of staying in flight
(e.g.TSt,FF = 0.7; TFF,FF = 0.3). The inverse is true
when the ball is ascending(TFF,St = 0.7; TSt,St = 0.3).
Fig. 3(a) shows that this strategy significantly improves
the accuracy of the estimated velocity. RMS errors are
reduced to0.13 cm and 0.0119 m/s for position and
velocity, respectively. Fig. 3(b) shows that estimate er-
rors are small until touchdown and rise only modestly
thereafter, in sharp contrast with the estimate errors of
the conventional approach. This illustrates the benefit of
discarding knowingly inaccurate estimates. Fig. 3(c) shows
the selective deactivation of unnecessary filters during flight
and stance as well as the transition point from one mode
to the other.

V. EXPERIMENTATION RESULTS

This technique is extended to RHex, where the task is to es-
timate the jogging robot’s height using onboard accelerom-
eters. RHex’s locomotion mechanism is characterized by
six compliant legs that confer to the robot a significant
capacity to overcome obstacles, but also generate large
dynamics that are difficult to model [16], [2].

A. State Estimation With Leg Strain Gauges

Fig. 4 shows RHex’s vertical acceleration when jogging.
The frequency of the signal corresponds to that of the
gait alternating flight and stance phases. The identity of
the mode in operation can be inferred from strain gauges
that measure leg compression and thus detect whether the
robot is in flight or in stance [17]. Therefore, strain gauge
measurements serve as a predicate for the flight and stance
contexts.
For simplicity, RHex is modeled as a bouncing ball, using
the ballistic flight and elastic mass-spring models. The
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Fig. 4. Rhex’s acceleration in the vertical direction as recorded by on-
board accelerometer. The gravity bias is removed from the measurement,
so a zero acceleration corresponds to the robot standing still. Leg strain
gauges detect stance phases (diamonds) and flight phases (circles).

mass-spring parameters are set to the actual mass of the
robot (8.5 Kg) and the spring constant that yields accept-
able state estimates is found to be6800 N.m, a value close
to the physical spring constant estimated at6600 N.m.
Kalman filters combine predicted and measured accelera-
tions and output consolidated estimates. When the strain
gauge measurements indicate that the robot is in stance
or in flight, the IMM only updates the corresponding
filter. Transitions between flight and stance compress the
legs in complex sequences that make context identification
difficult. In these situations, the complete set of IMM
models are updated. The output is then integrated twice
to extract the state.
The resulting height estimates compare favorably with
ground truth, as shown in Fig. 5(a). The mean and standard
deviation of the RMS difference between the estimated
height and the ground truth measurement over12 exper-
iments is 1.85 cm and 0.37 cm, respectively. Fig. 5(b)
shows the system’s estimate of mode probabilities, the
transition points from one mode to the other, and the
selective activation of the filters.
The quality of the estimates underlines the significance
of the mass-spring model’s contribution. Through the vir-
tual spring, the model anchors the robot to the ground
and maintains its height within the vicinity ofl0. Thus,
by expressing the fact that the robot cannot leave the
ground, the simple model is able to significantly mitigate
the problem of filter divergence. For comparison, height
estimates obtained by directly integrating the accelerometer
are plotted. As expected, the model-less estimates diverge
rapidly.

B. State Estimation Without Leg Strain Gauges

Strain gauges enable accurate mode detection, but they
are expensive and complex to install on circulating legs.
Accelerometers may provide a less expensive alternative.
This can be achieved by reasoning about what acceleration
values are expected in each mode. For instance, calibrated
accelerations close to−g are expected during flight, and
positive accelerations are expected during stance. Thus,
instead of identifying the mode by classifying strain gauge
measurements, the strategy is to classify accelerometer
output as follows:
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Fig. 5. The modified IMM yields relatively accurate estimates of RHex’s
height while jogging. Here, the robot’s behavior is modeled after an elastic
bouncing ball.

• Flight Context:ẍ < −6 m/s2

• Stance Context:̈x > 0
• Unidentified Context:0 > ẍ > −6 m/s2. Accelerom-

eter output within this context indicates that the robot
is transitioning between flight and stance. Context
bounds are derived from experiment observation.

State estimates obtained with this contextual classification
are virtually indistinguishable from the results of Fig. 5.
The mean and standard deviation of the RMS error over12
experiments are2.09 cm and0.39 cm, respectively, which
compare favorably to the values obtained with the help
of strain gauges. This result indicates that accurate state
estimation could be performed using low-cost sensors such
as accelerometers.

VI. CONCLUSION

Context-based state estimation enables accurate, high-
bandwidth mode identification for hybrid systems. The
approach classifies sensor measurements in mode-specific
contexts to recognize the dynamics and help multiple-
model filters choose appropriate models.
This research extends the applicability of classification to
hybrid systems with time varying dynamics and introduces
modifications to the IMM algorithm in order to take
advantage of independent mode identification. When clas-
sification recognizes the dynamics, the mode is identified
at a bandwidth similar to that of onboard sensors. Modified
IMMs use this information to selectively update appropriate
filters and deactivate others. When the changing dynamics

cannot be classified, IMMs resume conventional operation
for estimating state and mode transition points, which in
turn helps improve context identification. Thus, combining
context classification and multiple-model filtering improves
the bandwidth and accuracy of state estimation.
Ongoing research is extending context classification to the
problem of verifying the accuracy of the entire model set
used by a multiple-model system. The technique is also
being applied to systems with smoothly varying dynamics,
where the challenge is to estimate the accuracy with which
the dynamics are recognized, infer an assessment of model
accuracy, and adapt filter parameters accordingly.
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