
1

Shape Space Planner for Shape-Accelerated

Balancing Mobile Robots
Umashankar Nagarajan and Ralph Hollis

Abstract—This paper introduces shape-accelerated bal-
ancing systems as a special class of underactuated systems
wherein their shape configurations can be mapped to the
accelerations in the position space. These systems are
destabilized by gravitational forces and have non-integrable
constraints on their dynamics. Balancing mobile robots,
like the ballbot, are examples of such systems. The ballbot
is a human-sized dynamically stable mobile robot that
balances on a single ball. This paper presents a shape
trajectory planner that uses dynamic constraint equations
to plan trajectories in the shape space, which when tracked
will result in approximate tracking of desired position
trajectories. The planner can handle systems with more
shape variables than position variables, and can also handle
cases where a subset of the shape variables is artificially
constrained. Experimental results are shown on the ballbot
with arms where different desired position space motions
are achieved by tracking shape space motions of either body
lean angles, or arm angles or combinations of the two; and
also by tracking only the body lean motions while the arm
angles are artificially constrained.

Index Terms—Balancing mobile robots, underactuated
systems, dynamics and control, shape trajectory planning.

I. INTRODUCTION

Mobile robots will soon be operating and interacting

with us in human environments. They will be offering

a variety of assistive technologies that will augment

our capabilities and enhance the quality of our lives.

It is becoming increasingly apparent that, to be most

effective, many of these robots will be dynamically sta-

ble machines that actively balance just like humans do.

Such a balancing robot rapidly and continuously adjusts

the relationship between its center of gravity and base

of support to enable motion (Hollis 2006). Balancing

mobile robots have underlying dynamic properties that

can be exploited in order to carry out fast, graceful

and efficient motions. Balancing mobile robots can be

U. Nagarajan is with Disney Research, Pittsburgh, PA 15213,
USA. This work was done when he was with The Robotics Insti-
tute, Carnegie Mellon University, Pittsburgh, PA 15213, USA. email:
umashankar@disneyresearch.com.

R. Hollis is with The Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA 15213, USA. email: rhollis@cs.cmu.edu.

tall enough to interact with people at eye-level, narrow

enough to easily negotiate cluttered environments, and

they can move with speed and grace comparable to that

of humans. They are also capable of safe, gentle physical

interaction.

Two-wheeled balancing mobile robots (Deegan et al.

2006; Stilman et al. 2010; Takahashi et al. 2000) became

popular after the introduction of the Segway Robotic

Mobility Platform (Nguyen et al. 2004). Grupen and

his group introduced uBot (Deegan et al. 2006), a

two-wheeled balancing mobile manipulation platform,

and demonstrated that balancing mobile robots can be

effective mobile manipulators with the ability to maintain

postural stability, generate forces on external objects and

withstand greater impact forces (Deegan et al. 2007).

Stilman and his group introduced Golem Krang (Stilman

et al. 2010), a two-wheeled balancing mobile manipula-

tion platform that has the capability to autonomously

stand and sit. These two-wheeled balancing mobile

robots balance only in a single vertical plane, and their

kinematic constraints do not allow lateral motion.

Our group introduced the ballbot (Hollis 2006; Lauw-

ers et al. 2005, 2006), the first successful dynamically

stable mobile robot that balances on a single ball, shown

in Fig. 1. The ballbot balances in both vertical planes,

(a) (b)

Fig. 1. (a) The ballbot balancing; and (b) a more recent version of
the ballbot having a pair of 2-DOF arms.

International Journal of Robotics Research (IJRR)
Volume 32, Issue 11, pp. 1323 – 1341, September 2013

and hence is omnidirectional. A detailed description

of the ballbot’s hardware, its control architecture, its

dynamic motion and physical interaction capabilities

can be found in our previous work (Nagarajan et al.

2009a,b,c). Since the introduction of the ballbot, several

other groups have developed single-wheeled balancing

mobile robots (Havasi 2005; Kumagai and Ochiai 2008;

Rezero 2010). Kumagai developed the BallIP (Kumagai

and Ochiai 2008), and demonstrated several cooperative

transportation tasks with ball balancing robots (Kumagai

and Ochiai 2009). A group of mechanical engineering

students at ETH Zurich developed the Rezero (Rezero

2010), and re-emphasized the dynamic capabilities of

ball balancing mobile robots.

Balancing mobile robots like the ballbot are under-

actuated systems with unstable zero dynamics (Isidori

1989). They have second-order, non-integrable con-

straints on their dynamics that restrict the family of

configuration trajectories that they can follow. The con-

figuration space of any dynamic system can be divided

into the position space and the shape space. The po-

sition variables represent the position of the system in

the world, whereas the shape variables are those that

affect the inertia matrix of the system and dominate the

system dynamics. Navigation tasks for mobile robots are

generally posed as desired motions in the position space,

and do not deal with shape space motions. However, for

balancing mobile robots, the strong coupling between

the position dynamics and the shape dynamics makes it

impossible to ignore shape space motions while tracking

desired motions in the position space. Therefore, it is

necessary to plan appropriate shape space motions in

order to achieve desired position space motions. More-

over, the dynamic constraints allow accurate tracking of

arbitrary trajectories in the shape space but restricts the

trajectories that can be followed in the position space,

which implies that arbitrary position space motions can

only be approximately achieved.

A. Approach

This paper presents a trajectory planner that plans

shape trajectories, which when tracked will result in

approximate tracking of position trajectories. The shape

trajectory planner presented in this paper is restricted to

a special class of underactuated systems called shape-

accelerated balancing systems to which balancing mo-

bile robots like the ballbot belong. In shape-accelerated

balancing systems, one can map their shape configura-

tions to the accelerations in the position space. Moreover,

in the neighborhood of the origin, one can find a linear

map from the accelerations in the position space to

the shape configurations. The shape trajectory planner

presented in this paper finds such a time-invariant linear

map (constant gain matrix) that transforms the desired

acceleration trajectory in the position space to a planned

shape trajectory such that the sum of squared error

between the desired acceleration trajectory and the ac-

celeration trajectory resulting from tracking the planned

shape trajectory is minimized. Therefore, the shape tra-

jectory planning for shape-accelerated balancing systems

is reduced to an optimization problem of finding a time-

invariant linear map (constant gain matrix) from desired

accelerations in the position space to shape configura-

tions, and standard nonlinear leasts-squares optimization

tools are used to solve this problem.

B. Contributions

This paper introduces shape-accelerated balancing

systems as a special class of underactuated systems

wherein one can map their shape configurations to ac-

celerations in the position space (Sec. III-B). It presents

a trajectory planner that plans shape trajectories, which

when tracked result in approximate tracking of desired

acceleration trajectories in the position space. The shape

trajectory planner can handle systems with more shape

variables than position variables, and can also account

for additional shape constraints (Sec. IV). This paper

also presents a control architecture that achieves closed-

loop tracking of desired position trajectories. Several

experimental results on the ballbot with arms, which

validate the shape trajectory planner and the control

architecture are presented (Sec. V). This paper is a

significantly improved and extended version of the work

presented in (Nagarajan 2010; Nagarajan et al. 2012).

II. RELATED WORK

Several nonlinear control procedures based on partial

feedback linearization (Isidori 1989; Isidori and Byrnes

1990; Spong 1994) are available in the nonlinear control

literature for regulation of underactuated mechanical

systems. Underactuated balancing systems have unsta-

ble zero dynamics, and are called nonminimum-phase

systems. A variety of nonlinear inversion based ap-

proaches (Devasia and Paden 1994; Devasia et al. 1996;

Getz 1994; Getz and Hedrick 1995; Getz 1996) have

been used in the nonlinear control literature to achieve

approximate tracking of desired trajectories for such

systems. One such dynamic inversion method was de-

veloped by Getz (Getz 1994). He developed a nonlinear

controller based on internal equilibrium manifold (Getz

and Hedrick 1995) for nonlinear nonminimum-phase

systems that provided a larger region of attraction over

2

International Journal of Robotics Research (IJRR)
Volume 32, Issue 11, pp. 1323 – 1341, September 2013

linear regulators, and enabled better output tracking

while maintaining balance (Getz 1996). These control

procedures were demonstrated on bicycle models (Getz

1994). These dynamic inversion based approaches are

computationally expensive, and cannot be run real-time

on robots. Moreover, these approaches are sensitive to

modeling uncertainties, especially to uncertainties in

the actuator dynamics. This paper presents a trajectory

planning algorithm that is fast enough to run real-time on

robots. Moreover, since the trajectory planner presented

in this paper uses only the dynamic constraint equations,

a subset of the equations of motion, it is more robust

to modeling uncertainties in actuator mechanisms and

nonlinear friction effects.

Geometric mechanics tools have been used to study

the effect of internal shape changes on net changes in

position and orientation in mechanical systems with non-

holonomic constraints and symmetries (Ostrowski and

Burdick 1996; Ostrowski 1999). Ostrowski presented the

mechanical connection and the reconstruction equation

that relate shape changes to momentum and position

(Ostrowski and Burdick 1995). He presented various

gaits for snakeboards (Lewis et al. 1994) and Hirose

snakes (Hirose 1993), and addressed their controllability

issues (Ostrowski and Burdick 1995). However, planning

procedures that plan for motions in the shape space to

achieve desired motions in the position space were not

presented. Shammas et al. presented a variety of gait

design tools for generating kinematic and dynamic gaits

for principally kinematic, purely mechanical systems

(Shammas et al. 2006, 2007a), and dynamic systems

with nonholonomic velocity constraints (Shammas et al.

2005, 2007b). However, these gait design tools are

not applicable to dynamic systems with nonholonomic

acceleration constraints. Hatton and Choset (Hatton and

Choset 2008) used the connection, which relates the

body velocity to internal shape changes, to create a set

of vector fields on the shape space called connection

vector fields. Each connection vector field corresponds

to one component of the body velocity, and informs how

a given shape change will move the system through its

position space. The main advantage of this approach is

that it is not restricted to gaits, and can be used for

any general shape change. However, this procedure was

restricted to principally kinematic and purely mechanical

systems (Shammas et al. 2006, 2007a).

Direct collocation methods (Hargraves and Paris 1987;

von Stryk 1993; von Stryk and Bulirsch 1992) have

emerged as popular numerical techniques for solving op-

timal control and feasible trajectory generation problems

for nonlinear systems. These approaches use piecewise

polynomial approximations for the state and control tra-

jectories and transform the problem into an optimization

problem subject to nonlinear constraints given by the

equations of motion. The trajectory planner presented in

this paper is significantly faster than direct collocation

methods in finding feasible trajectories that approximate

desired position space motions.

III. BACKGROUND

This section presents the general equations of motion

of underactuated systems, and introduces position and

shape variables. It also introduces shape-accelerated bal-

ancing systems and their dynamic constraint equations.

A brief description of the ballbot with arms, its 3D

dynamic model, and its control architecture are also

presented.

A. Underactuated Mechanical Systems

The forced Euler-Lagrange equations of motion for an

underactuated mechanical system are given by:

d

dt

∂L

∂q̇
− ∂L

∂q
=

[

τ
0

]

, (1)

where q ∈ R
n is the configuration vector, L (q, q̇) =

K(q, q̇) − V (q) is the Lagrangian with kinetic energy

K(q, q̇) and potential energy V (q), and τ ∈ R
m is the

vector of generalized forces. The mechanical system sat-

isfying Eq. 1 is called an underactuated system (Spong

1994) because there are fewer independent control inputs

than configuration variables, i.e., m < n. Equation 1 can

be written in matrix form as follows:

M(q)q̈ + C(q, q̇)q̇ +G(q) =

[

τ
0

]

, (2)

where M(q) ∈ R
n×n is the mass/inertia matrix,

C(q, q̇) ∈ R
n×n is the Coriolis and centrifugal matrix,

and G(q) ∈ R
n is the vector of gravitational forces.

The configuration variables q ∈ R
n of any dynamic

system can be split into position variables qx ∈ R
nx ,

and shape variables qs ∈ R
ns , i.e., q = [qx, qs]

T and

nx + ns = n. The shape variables qs are those that

appear in the mass/inertia matrix M(q), whereas the

position/external variables qx are those that do not appear

in the mass/inertia matrix M(q) (Olfati-Saber 2001).

This implies that M(q) is a function of only the shape

variables qs. Position variables represent the position

of the robot in the world frame, and the dynamics of

mobile robots are independent of transformations of their

position variables. However, shape variables affect the

mass/inertia matrix of the system and hence dominate

the system dynamics.

3

International Journal of Robotics Research (IJRR)
Volume 32, Issue 11, pp. 1323 – 1341, September 2013

B. Shape-Accelerated Balancing Systems

The work presented in this paper focuses on a special

class of underactuated systems called shape-accelerated

balancing systems to which balancing mobile robots like

the ballbot belong. Other examples of shape-accelerated

balancing systems include planar and 3D cart-pole

systems with unactuated lean angles, planar balancing

wheeled robots like the Segway (Nguyen et al. 2004)

moving in a plane, and marble-maze robots. Shape-

accelerated balancing systems have several special prop-

erties, some which are exploited by the shape trajectory

planner presented in Sec. IV. A detailed presentation

of the properties of shape-accelerated balancing systems

can be found in (Nagarajan 2012).

The degree of underactuation of a shape-accelerated

balancing system matches the number of its position

variables qx ∈ R
nx , i.e, nx = n − m. Moreover, the

number of shape variables qs ∈ R
ns is an integral

multiple of the number of position variables qx ∈ R
nx ,

i.e., ns = knx, for some k ∈ Z
+, where Z

+ represents

the set of positive integers. This work defines a shape set

to be a set of nx shape variables that can independently

affect the dynamics of all position variables. Let’s con-

sider shape-accelerated balancing systems whose posi-

tion variables qx are actuated, while their shape variables

qs contain both actuated qsa ∈ R
nsa and unactuated vari-

ables qsu ∈ R
nsu . Since the number of unactuated shape

variables matches the number of position variables, such

a system has one unactuated shape set and k−1 actuated

shape sets.

Another important property of a shape-accelerated

balancing system is that its equations of motion as shown

in Eq. 2 are independent of both position and velocity

of its position variables, i.e., qx and q̇x. Therefore, its
mass/inertia matrix is of the form:

M(qs)=

Mxx(qs) Mxsa(qs) Mxsu(qs)
Msax(qs) Msasa(qs) Msasu(qs)
Msux(qs) Msusa(qs) Msusu(qs)

, (3)

the vector of Coriolis and centrifugal forces is of the

form:

C(qs, q̇s)q̇=

Cxsa(qs, q̇s)q̇sa+Cxsu(qs, q̇s)q̇su
Csasa(qs, q̇s)q̇sa+Csasu(qs, q̇s)q̇su
Csusa(qs, q̇s)q̇sa+Csusu(qs, q̇s)q̇su

,

(4)

and the vector of gravitational forces is of the form:

G(qs) =

0

Gsa(qs)
Gsu(qs)

 . (5)

The last n − m equations of motion that correspond

to the unactuated degrees of freedom are given by

Msux(qs)q̈x +Msusa(qs)q̈sa +Msusu(qs)q̈su +

Csusa(qs, q̇s)q̇sa + Csusa(qs, q̇s)q̇su +Gsu(qs) = 0 (6)

can be written as:

Φ(qs, q̇s, q̈s, q̈x) = 0. (7)

Equations 6 and 7 are called second-order nonholonomic

constraints, or dynamic constraints because they are

non-integrable (Oriolo and Nakamura 1991). They are

not even partially integrable. The dynamic constraint

equations in Eq. 7 are independent of the position

and velocity of position variables, i.e., qx and q̇x, but
relate the acceleration of position variables q̈x to the

position, velocity and acceleration of shape variables,

i.e.,
(

qs, q̇s, q̈s
)

.

The shape-accelerated balancing systems are named

so because one can map their shape configurations to

the acceleration of their position variables. Such a map

can be derived from the dynamic constraint equations as

shown in Eq. 9, and the proof of its existence is presented

in Theorem 1.

Theorem 1. For a shape-accelerated balancing system,

there exists a nonlinear map Γ(qs) in the neighborhood

of the origin that maps the shape configurations to

accelerations in the position space such that its dynamic

constraint equations in Eq. 7 are satisfied.

Proof: The Jacobian of Φ(qs, q̇s, q̈s, q̈x) in Eq. 7

w.r.t. q̈x at the origin is given by

∂Φ

∂q̈x

∣

∣

∣

∣

(qs,q̇s,q̈s,q̈x)=(0,0,0,0)

= Msux(qs)

∣

∣

∣

∣

qs=0

. (8)

By the implicit function theorem (Marsden and Hoffman

1993), if the Jacobian in Eq. 8 exists and is invertible,

then there exists a map Γ : (qs, q̇s, q̈s) → q̈x in the neigh-

borhood of the origin such that the dynamic constraints

in Eq. 7 are satisfied. For shape-accelerated balancing

systems, Msux(qs) exists and is also invertible, and

hence, the map Γ exists as shown below:

Γ(qs, q̇s, q̈s) = −Msux(qs)
−1

(

Msusa(qs)q̈sa +

Msusu(qs)q̈su + Csusa(qs, q̇s)q̇sa +

Csusa(qs, q̇s)q̇su +Gsu(qs)
)

(9)

such that Φ(qs, q̇s, q̈s,Γ(qs, q̇s, q̈s)) = 0 in the neighbor-

hood of the origin.

4

International Journal of Robotics Research (IJRR)
Volume 32, Issue 11, pp. 1323 – 1341, September 2013

C. The Ballbot

The ballbot, shown in Fig. 1, is a human-sized mobile

robot that balances on a single ball. It is an underactuated

system wherein the ball is directly actuated, while the

body is not. The ball is actuated using a four-motor

inverse mouse-ball drive mechanism shown in Fig. 2(a).
A pair of actuated opposing rollers drive the ball in

each of the two orthogonal motion directions on the

floor. The encoders on the ball motors provide odometry

information of the ball, while the body lean angles are

measured using an inertial measurement unit (IMU). A

more detailed description of the ballbot’s hardware can

be found in (Nagarajan et al. 2009c). Recently, a pair

of 2-DOF arms driven by series-elastic actuators were

added to the robot as shown in Fig. 1(b). The arm angles

are measured using the encoders on the series-elastic

actuators, and a detailed hardware description can be

found in (Nagarajan et al. 2012). The system parameters

of the ballbot with arms are presented in Table I.

1) 3D Ballbot Model with Arms: The ballbot with

arms, shown in Fig. 1(b), is modeled as a rigid cylinder

on top of a rigid sphere with a pair of massless arms

having weights at their ends. The model assumes that:

(i) there is no slip between the ball and the floor; (ii)
the floor is flat and level; and (iii) the ball, the body

and the arms have two degrees of freedom each with no

yaw motion, i.e., rotation about the vertical axis. The

arms are placed symmetrically about the body’s sagittal

plane, and the hardware components within the body are

placed such that its center of mass is on its central axis.

The 3D ballbot model with arms has eight config-

uration variables given by q = [θ, αl, αr, φ] ∈ R
8,

where, θ = [θx, θy]
T ∈ R

2 are configurations of the

ball, αl = [αl
x, α

l
y]

T ∈ R
2 are configurations of the left

arm, αr = [αr
x, α

r
y]

T ∈ R
2 are configurations of the right

arm, and φ = [φx, φy]
T ∈ R

2 are configurations of the

Ball

Ball
transfer

Drive
motor

Encoder Belt
tensionerDrive

belt

Drive
roller

(a)

r

rr

w

τθ

x

τm
x

2
τm

x

1

τθ

y

τm
y

4
τm

y

3

rr

r

rr

w

rr

(b)

Fig. 2. (a) CAD model of the inverse mouse-ball drive; and (b) Ball
actuation in the two orthogonal motion directions.

TABLE I
SYSTEM PARAMETERS FOR THE BALLBOT WITH ARMS

Parameter Symbol Value

Ball radius rw 0.1058 m

Roller radius rr 0.006335 m

Ball mass mw 2.44 kg

Ball moment of inertia Iw 0.0174 kgm2

Body mass mb 70.3 kg

Body CoM distance along z-axis
ℓb 0.87 m

from ball center

Body roll moment of inertia
Ibxx 12.59 kgm2

about its CoM

Body pitch moment of inertia
Ibyy 12.48 kgm2

about its CoM

Body yaw moment of inertia
Ibzz 0.66 kgm2

about its CoM

Arm mass ma 1 kg

Arm length ℓa 0.55 m

Arm joint distance along y-axis
d
y
a 0.18415 m

from ball center

Arm joint distance along z-axis
dza 1.3 m

from ball center

Arm roll moment of inertia
Iaxx 0.0016 kgm2

about its CoM

Arm pitch moment of inertia
Iayy 0.0016 kgm2

about its CoM

Arm yaw moment of inertia
Iazz 0.0010 kgm2

about its CoM

body. The 3D ballbot model with arms with all of its

configurations are shown in Fig. 3.

The origin of the world frame is fixed to the initial

position of the center of the ball. Since we have assumed

a flat and level floor, the position (xw, yw) of the center

Y

X

Z

w

w

w
r

y
w

xw

Yb

Zb

Xb

Zb
/

Xb
/

Zb
//

Yb
//

y

w

Yla

Xla

Zla
Zla

Xla
/

/ Zla
//

Yla
//

x

xα

x

l
yα
l

Yra

Xra

Zra
Zra

Xra
/

/ Zra
//

Yra
//

xα
r

yα
r

l

la

b

mw

m
ma

b

da
y

da
z ma

Fig. 3. The 3D ballbot model with a pair of 2-DOF arms: (φx, φy)

are the body configurations, (αl
x, α

l
y) are the left arm configurations,

and (αr
x, α

r
y) are the right arm configurations. The ball configurations

(θx, θy) are chosen such that the ball position (xw, yw) is given by
xw = rw(θx + φy) and yw = rw(θy − φx), where rw is the radius
of the ball.

5

International Journal of Robotics Research (IJRR)
Volume 32, Issue 11, pp. 1323 – 1341, September 2013

of the ball matches the position of the ball’s contact

point on the floor. In this model, we are interested only

in the position of the ball and not in its orientation.

The ball configurations (θx, θy) are chosen such that

xw = rw(θx + φy) and yw = rw(θy − φx), where

rw is the radius of the ball. The ball configurations

(θx, θy) are angular configurations that represent the ball
position, and they do not represent the orientation of

the ball. Therefore, θx, θy ∈ (−∞,∞). There are two

advantages in choosing these coordinates: one is that

the ball configurations (θx, θy) directly correspond to the

encoder readings on the ball motors, and the other is that

this coordinate choice removes input coupling between

the ball and the body from the equations of motion.

The forced Euler-Lagrange equations of motion of

the ballbot with arms can be written in matrix form

as shown in Eq. 2. The ball configurations form the

actuated position variables, i.e., qx = θ ∈ R
2, the arm

angles form the actuated shape variables, i.e., qsa =
[αl, αr]T ∈ R

4, and the body angles form the unactuated

shape variables, i.e., qsu = φ ∈ R
2. The ballbot with

arms has one unactuated shape set and two actuated

shape sets, whereas, the ballbot without arms has one

unactuated shape set and no actuated shape sets. For the

ballbot with arms, the system matrices in Eq. 2 are of

the form given below:

M(q)=

Mθθ Mθαl(qs) Mθαr (qs) Mθφ(qs)
Mαlθ(qs) Mαlαl(qs) Mαlαr (qs) Mαlφ(qs)
Mαrθ(qs) Mαrαl(qs) Mαrαr (qs) Mαrφ(qs)
Mφθ(qs) Mφαl(qs) Mφαr (qs) Mφφ(qs)

,

(10)

C(q, q̇)=

0 Cθαl(qs, q̇s) Cθαr (qs, q̇s) Cθφ(qs, q̇s)
0 Cαlαl(qs, q̇s) 0 Cαlφ(qs, q̇s)
0 0 Cαrαr (qs, q̇s) Cαrφ(qs, q̇s)
0 Cφαl(qs, q̇s) Cφαr (qs, q̇s) Cφφ(qs, q̇s)

,

(11)

G(q)=

0

Gαl(qs)
Gαr (qs)
Gφ(qs)

, (12)

where, each Mij ∈ R
2×2, each Cij ∈ R

2×2 and each

Gi ∈ R
2×1. These submatrices are functions of the posi-

tion and velocity of the shape variables, and the system

parameters. They have long symbolic expressions, and

hence are not presented in this paper.

The vector of generalized forces is given by τ =
[τθ, ταl , ταr]T ∈ R

6×1, where τθ ∈ R
2×1 is the torque

vector on the ball, ταl ∈ R
2×1 is the torque vector on

the left arm, ταr ∈ R
2×1 is the torque vector on the right

arm. Although there are four motors that drive the ball,

the ball torque vector τθ = [τxθ , τ
y
θ]

T ∈ R
2×1. As shown

in Fig. 2(a), a pair of active opposing rollers drive the

ball along each orthogonal motion direction on the floor.

The ball torque vector τθ is given by:

[

τxθ
τyθ

]

=
rw
rr

[

1 1 0 0
0 0 1 1

]

τxm1

τxm2

τym3

τym4

, (13)

where rw is the radius of the ball, rr is the radius of

the roller, and τxm1, τ
x
m2, τ

y
m3 and τym4 are the torques

on the four ball motors. The motor pairs (m1,m2) and

(m3,m4) drive the ball in the orthogonal X and Y

directions respectively as shown in Fig. 2(b). In the

current setup, the amplifiers that drive the opposing

motors are hardwired to command the same torque, and

hence, τxm1 = τxm2 =
rr
2rw

τxθ and τym3 = τym4 =
rr
2rw

τyθ .

2) Ballbot Control Architecture: The ballbot uses a

balancing controller to achieve desired body angles.

Since the body angles are unactuated, the balancing

controller cannot directly track desired body angles. The

balancing controller indirectly achieves this objective by

actuating the ball such that the projection of the body’s

center of mass on the floor tracks the projection of the

desired center of mass obtained from desired body an-

gles. The balancing controller is a Proportional-Integral-

Derivative (PID) controller and more details of it can be

found in (Nagarajan et al. 2009c). The trajectory tracking

controllers on the arms use the computed torque (Murray

et al. 1994) method for feedforward terms and a PID

controller for feedback terms (Nagarajan et al. 2012).

The ballbot is also capable of achieving unlimited yaw

rotation of its body, i.e. rotation about its vertical axis.

The ballbot’s body attaches to the ball drive mechanism

via a bearing and a slip ring assembly, which make the

yaw motion possible. However, the yaw drive mechanism

can only yaw the body relative to the ball and cannot

directly control the yaw of the ball. The details of the

yaw controller that achieves the desired yaw motion

of the body can be found in (Nagarajan et al. 2009c).

The relative yaw of the ball drive unit and the body is

measured by an absolute encoder. The work presented

in this paper assumes that the ballbot’s body cannot

yaw, and hence for the experimental results presented

in Sec. V, the ballbot uses its yaw controller to maintain

its heading. In order to account for the yaw rotation of

the ball drive, the ball drive commands issued by the

balancing controller are transformed into the frame of

the ball drive unit using the angular offsets measured by

6

International Journal of Robotics Research (IJRR)
Volume 32, Issue 11, pp. 1323 – 1341, September 2013

the absolute yaw encoder.

IV. DYNAMIC CONSTRAINT-BASED SHAPE

TRAJECTORY PLANNER

The dynamic constraint equations of an underactuated

system map its shape configurations to its accelerations

in the position space, and vice versa. For a shape-

accelerated balancing system, Theorem 1 proved the

existence of a map from shape configurations to the

accelerations in the position space. In the neighborhood

of the origin, one can also find a linear map from accel-

erations in the position space to the shape configurations.

This section presents a shape trajectory planner that uses

the dynamic constraint equations to find a time-invariant

linear map (constant gain matrix) that transforms the

desired acceleration trajectory in the position space to

a planned shape trajectory such that the sum of squared

error between the desired acceleration trajectory in the

position space and the acceleration trajectory resulting

from tracking the planned shape trajectory is minimized.

Such a time-invariant linear map can be analytically

derived for a special case, wherein the shape-accelerated

balancing system sticks to a constant shape config-

uration, e.g., the ballbot leaning at a constant body

angle as described in Sec. IV-A. For the general case,

Sec. IV-B formulates the shape trajectory planning as an

optimization problem of finding the time-invariant linear

map that minimizes the sum of squared error between

the desired acceleration trajectory and the acceleration

trajectory resulting from tracking the planned shape

trajectory. The optimization algorithm uses the analyt-

ically derived time-invariant linear map from the special

case as its initial guess. The shape trajectory planner

is also extended to handle additional shape constraints

as described in Sec. IV-C, and the control architecture

that enables closed-loop tracking of desired position

trajectories is presented in Sec. IV-D.

A. Special Case: Constant Shape Configuration

A constant, non-zero shape configuration qs with q̇s =
0 and q̈s = 0 reduces the dynamic constraint equations

Φ(qs, q̇s, q̈s, q̈x) in Eq. 7 to Φ′(qs, q̈x) given by

Φ′(qs, q̈x) = Φ(qs, 0, 0, q̈x)

= Msux(qs)q̈x +Gsu(qs). (14)

It follows from Eq. 7 that Φ′(qs, q̈x) = 0. Theorem 1

holds in this case too, and hence the map Γ(qs, q̇s, q̈s)
in Eq. 9 reduces to Γ′(qs) : qs → q̈x given by:

Γ′(qs) = −Msux(qs)
−1Gsu(qs) (15)

The Jacobian linearization of Γ′(qs) in Eq. 15 w.r.t.

qs at qs = 0 gives a linear map K0
qs
:

K0
qs

= −∂
(

Msux(qs)
−1Gsu(qs)

)

∂qs

∣

∣

∣

∣

qs=0

∈ R
nx×ns ,

(16)

which is a function of only system parameters, and

hence it is a constant gain matrix. Therefore, in the

neighborhood of the origin, tracking a constant shape

configuration results in a constant acceleration in the

position space given by

q̈x = K0
qs
qs. (17)

In order to find a linear map that maps desired accel-

erations in position space to shape configurations, K0
qs

must be invertible. Theorem 2 presents the conditions

on the invertibility of Γ′(qs) and K0
qs
. It is important to

note that the definitions of the neighborhood of origin in

which Γ′(qs) and K0
qs

are valid are different from each

other since Γ′(qs) is an exact map, whereas K0
qs

is an

approximate map.

Theorem 2. For a shape-accelerated balancing system

in a constant shape configuration, the nonlinear map

Γ′(qs) in Eq. 15 and the linear map K0
qs

in Eq. 16 are

invertible in the neighborhood of the origin only when

the shape space and the position space are of equal

dimensions.

Proof: The Jacobian of Φ′(qs, q̈x) in Eq. 14 w.r.t.

qs at (qs, q̈x) = (0, 0) is given by

∂Φ′

∂qs

∣

∣

∣

∣

(qs,q̈x)=(0,0)

=
∂Gsu(qs)

∂qs

∣

∣

∣

∣

qs=0

. (18)

By the implicit function theorem (Marsden and Hoffman

1993), if the Jacobian in Eq. 18 exists and is invert-

ible then, the map Γ′ in Eq. 15 is invertible in the

neighborhood of the origin, i.e., given an acceleration in

the position space, the constant shape configuration that

causes it will be given by Γ′−1. For shape-accelerated

balancing systems,
∂Gsu(qs)

∂qs
6= 0 ∈ R

nsu×ns at qs = 0

exists but is invertible only when the shape space and

the position space are of equal dimensions, and all shape

variables are unactuated. This implies that the map Γ′ in

Eq. 15 is invertible only when the shape space and the

position space are of equal dimensions, and all shape

variables are unactuated. Similarly, the linear map K0
qs

in Eq. 16 is also invertible only when the shape space

and the position space are of equal dimensions, and all

shape variables are unactuated.

Theorem 2 shows that for systems with equal number

of shape and position variables like the ballbot without

7

International Journal of Robotics Research (IJRR)
Volume 32, Issue 11, pp. 1323 – 1341, September 2013

arms, both the maps Γ′(qs) and K0
qs

exist and are

invertible in the neighborhood of the origin, whereas

for systems with more shape variables than position

variables like the ballbot with arms, both the maps Γ′(qs)
andK0

qs
exist but are not invertible. A discussion on both

these cases is presented below.

1) Shape space and position space of equal dimen-

sions: Consider shape-accelerated balancing systems

with equal number of shape and position variables, e.g.,
the ballbot without arms. Here, all shape variables are

unactuated, i.e., nsa = 0. For such systems, Theorem 2

shows that the map Γ′(qs) in Eq. 15 and the linear map

K0
qs

in Eq. 16 are both invertible. This implies that there

exists a linear map K0
qx

given by

K0
qx

= (K0
qs
)−1 ∈ R

ns×nx (19)

such that

qs = K0
qx
q̈x. (20)

Equations 17 and 20 show that q̈x is a constant if

qs is a constant, and vice versa. Therefore, for shape-

accelerated balancing systems with equal number of

shape and position variables, a constant desired accel-

eration q̈x in the position space is achieved by tracking

a constant shape configuration qs given by Eq. 20.

For example, the nonlinear map Γ′(qs) for the ballbot

without arms is given by:

Γ′(qs)=
η3

η1+η2Cφx
Cφy

Cφx
Sφy

−Sφx

(

η1Cφy
+η2Cφx

)

η1+η2Cφx

∈R
2×1,

(21)

and the linear maps K0
qs

and K0
qx

are given by:

K0
qs

=
η3

η1 + η2

[

0 1
−1 0

]

∈ R
2×2, (22)

K0
qx

=
η1 + η2

η3

[

0 −1
1 0

]

∈ R
2×2, (23)

where Ci = cos (i), Si = sin (i), and η1 = Iw +
(mb + mw)r

2
w, η2 = mbℓbrw, η3 = mbgℓb are non-

zero, positive functions of the system parameters listed

in Table I.

2) Shape space with more dimensions than position

space: Now, let’s consider shape-accelerated balancing

systems with more shape variables than position vari-

ables, e.g., the ballbot with arms. For such systems,

Theorem 2 shows that the map Γ′(qs) in Eq. 15 and

the linear map K0
qs

in Eq. 16 are both not invertible.

This is obvious because the matrix K0
qs

∈ R
nx×ns is

singular with more columns than rows. This implies that

there are infinite possible shape configurations that can

produce the same acceleration in the position space.

A minimum-norm pseudo-inverse of K0
qs

given by

(K0
qs
)# minimizes ‖qs‖2, where qs = (K0

qs
)#q̈x for

any acceleration q̈x in the position space. However, in

order to have the flexibility of choosing and relatively

weighing the contributions of the different shape sets to

achieve a desired motion in the position space, we use a

weighted pseudo-inverse (Nakamura 1991), which min-

imizes ‖W−1qs‖2, where W ∈ R
ns×ns is a symmetric,

positive definite weight matrix on the shape variables.

Therefore, for a shape-accelerated balancing system with

more shape variables than position variables, the time-

invariant linear map K0
qx

: q̈x → qs is chosen as the

weighted pseudo-inverse of K0
qs

given by

K0
qx

= W
(

K0
qs
W)# ∈ R

ns×nx , (24)

where, (·)# represents the minimum-norm pseudo-

inverse. The weight matrix W is chosen as

W =

[

Wqsa
0

0 Wqsu

]

∈ R
ns×ns , (25)

where Wqsa
∈ R

nsa×nsa and Wqsu
∈ R

nsu×nsu

are symmetric, positive definite weight matrices on the

actuated and unactuated shape sets respectively.

For the ballbot with arms, its nonlinear map Γ′(qs) has
long symbolic expressions and hence is not presented in

this paper. However, the Jacobian linearization of Γ′(qs)
w.r.t. its shape variables is given by:

K0
qs

=
1

χ3

[

0 −χ1 0 −χ1 0 χ2

χ1 0 χ1 0 −χ2 0

]

∈ R
2×6,

(26)

where χ1 = magℓa, χ2 = mbgℓb +2mag(d
z
a − ℓa), and

χ3 = Iw +(2ma+mb+mw)r
2
w +mbℓbrw +2ma(d

z
a−

ℓa)rw are all non-zero, positive functions of the system

parameters shown in Table I.

The weight matrix W can be chosen such that either

pure body motions or pure arm motions or any combina-

tion of the two are used to achieve desired accelerations

in the position space. The weight matrix W for the

ballbot with arms is of the form:

W =

Wαl 0 0

0 Wαr 0

0 0 Wφ

 ∈ R
6×6, (27)

where,

Wαl =
χ3

χ1

√
cαl

[

1 0
0 1

]

∈ R
2×2, (28)

Wαr =
χ3

χ1

√
cαr

[

1 0
0 1

]

∈ R
2×2, (29)

Wφ =
χ3

χ2

√
cφ

[

1 0
0 1

]

∈ R
2×2, (30)

8

International Journal of Robotics Research (IJRR)
Volume 32, Issue 11, pp. 1323 – 1341, September 2013

where cφ, cαl and cαr are user-picked contribution

ratios for the body angle, left arm and right arm angles

respectively such that cφ+cαl+cαr = 1, and χ1, χ2 and

χ3 are the same as in Eq. 26. The planned shape motions

can be restricted to just body angles by picking cφ = 1
and cαl = cαr = 0. Similarly, equal contributions from

the body, left arm and right arm angles can be achieved

by picking cφ = cαl = cαr = 1/3.

B. General Case: Shape Trajectory Planner

Section IV-A showed that constant shape configura-

tions needed to achieve constant desired accelerations

in the position space can be obtained from the lin-

ear maps shown in Eq. 19 and Eq. 24. However, in

order to accurately track arbitrary desired acceleration

trajectories in position space, the map Γ(qs, q̇s, q̈s) in

Eq. 9 must be invertible, which is not the case. But

any arbitrary acceleration trajectory in position space

can be approximately tracked, and this section presents a

shape trajectory planner that finds a time-invariant linear

map (constant gain matrix), which transforms desired

accelerations in the position space to planned shape con-

figurations such that the sum of squared error between

the desired acceleration trajectory in the position space

and the acceleration trajectory resulting from tracking

the planned shape trajectory is minimized.

Given a desired acceleration trajectory in the position

space q̈dx(t), the proposed shape trajectory planner finds

a time-invariant linear map Kqx : q̈x → qs, similar to

Eq. 19 and 24, such that the planned shape trajectory

qps (t) given by

qps (t) = Kqx q̈
d
x(t), (31)

when tracked, will result in an acceleration trajectory

q̈px(t) given by

q̈px(t) = Γ
(

Kqx q̈
d
x(t),Kqx

...
q d
x(t),Kqx

....
q d

x(t)
)

, (32)

which minimizes the sum of squared error J given by

J =

tf
∑

t=0

∥

∥

∥
q̈px(t)− q̈dx(t)

∥

∥

∥

2

2
, (33)

where tf is the time duration of the desired motion.

The optimization can be solved using nonlinear least-

squares solvers like Nelder-Mead simplex (Nelder and

Mead 1964) and Levenberg-Marquardt (Levenberg 1944)

algorithms. As described in Sec. IV-A, a constant desired

acceleration trajectory can be achieved usingKqx = K0
qx

given in Eq. 19 and Eq. 24, whereas for any arbitrary

q̈dx(t), K
0
qx

is used as the initial guess for the optimiza-

tion process. It is important to note that the gain matrix

Kqx is time-invariant, i.e., it is constant over the entire

trajectory.

The shape trajectory planner presented above deals

only with the tracking of a desired acceleration trajectory

q̈dx(t) and not of a desired position trajectory qdx(t).
The acceleration trajectory q̈px(t) can be numerically

integrated to obtain the resulting position trajectory qpx(t)
using initial conditions of the desired acceleration trajec-

tory qdx(t). Therefore, with matching initial conditions,

the position trajectory qpx(t) approximately tracks the

desired position trajectory qdx(t) if its acceleration trajec-

tory q̈px(t) approximately tracks the desired acceleration

trajectory q̈dx(t). The planned shape trajectory qps (t) and
the position trajectory qpx(t) form the feasible configura-

tion trajectories that approximate the desired motion in

the position space. When the initial conditions are not

met, feedback tracking of desired position trajectories is

necessary and the control architecture that achieves it is

presented in Sec. IV-D.

C. Planning with Additional Shape Constraints

A system with more shape variables than position

variables may need to use a subset of its shape con-

figurations to achieve tasks other than navigation. For

example, the ballbot with arms can use its arms for

manipulation, which will constrain the arm angles to

some specific manipulation trajectories. This section

presents a variant of the shape trajectory planner that

can handle these additional shape constraint trajectories,

and still achieve desired motions in the position space

using the other available shape configurations. The shape

planner assumes that there is at least one shape set

available without additional constraints so as to achieve

desired motions in the position space.

With no loss of generality, let’s assume that there

is just one actuated shape set, and it is constrained to

some reference trajectory, while the unactuated shape

set has no additional constraints. The objective here is to

plan trajectories for the unactuated shape configurations

such that they achieve the desired motion in the posi-

tion space, while counteracting the effect of additional

constraints on the other shape set.

Tracking the additional constraint (ac) trajectories for
actuated shape variables qacsa(t) results in acceleration

trajectories q̈acx (t) in the position space given by

q̈acx (t) = Γ
(

qacs (t), q̇acs (t), q̈acs (t)
)

, (34)

where qacs (t) =
[

qacsa(t), 0
]T

, i.e., zero angle trajectories

for the unactuated shape configurations qsu , and Γ is

obtained from Eq. 9. To achieve the desired acceleration

9

International Journal of Robotics Research (IJRR)
Volume 32, Issue 11, pp. 1323 – 1341, September 2013

Algorithm 1: Shape Trajectory Planner

input : Desired Position Trajectory qdx(t)
Constraint Shape Trajectory qacs (t)
Weight Matrix W

output: Planned Shape Trajectory qps (t)
begin1

Desired acceleration trajectory2

q̈dx(t)←
d2qdx(t)

dt2

Acceleration trajectory resulting from additional3

constraint shape trajectory

q̈acx (t)← Γ
(

qacs (t), q̇acs (t), q̈acs (t)
)

(Eq. 9)

Net desired acceleration trajectory4

q̈net
x (t)← q̈dx(t) + q̈acx (t)

Initialize the time-invariant linear map5

Kqx ← K0

qx (Eq. 24)

repeat6

Planned shape trajectory7

qps (t)← Kqx q̈
net
x (t)

Resulting acceleration trajectory8

q̈px(t)← Γ
(

qps (t), q̇
p
s (t), q̈

p
s (t)

)

(Eq. 9)

Calculate cost function9

J ←

tf
∑

t=0

∥

∥

∥
q̈
p
x(t)− q̈

d
x(t)

∥

∥

∥

2

2

dt

Update the time-invariant linear map10

∆K ← OptimizerUpdate(J , Kqx)
Kqx ← Kqx +∆K

until J < Jthres or ∆K < ∆Kthres11

return Planned shape trajectory qps (t)12

end13

trajectory q̈dx(t) in the position space, the unactuated

shape configurations have to achieve motions that com-

pensate for q̈acx (t), and achieve q̈dx(t). Therefore, in this

case, the planned shape trajectory qps (t) is chosen to be

qps (t) = Kqx q̈
net
x (t), (35)

where q̈netx (t) = q̈dx(t) − q̈acx (t) is the net desired

acceleration trajectory that the planner uses for planning

unactuated shape trajectories. The linear map Kqx in

Eq. 35 is obtained using the optimization procedure

described in Sec. IV-B, and it is initialized to K0
qx

in

Eq. 24 with the weight matrix W chosen such that the

shape variables without additional constraints are chosen

over those with additional constraints.

The overall shape trajectory planner is presented in

Algorithm 1. The Steps 6−11 of the algorithm are

implemented using nonlinear least-squares optimizers

like Nelder-Mead simplex (Nelder and Mead 1964) and

Levenberg-Marquardt (Levenberg 1944) algorithms.

D. Control Architecture

The shape trajectory planner presented above assumes

that there exists controllers that can accurately track the

planned shape trajectories. For the ballbot with arms,

the shape configurations include arm and body angles.

As described in Sec. III-C2, the desired body angle tra-

jectories are tracked using the PID balancing controller,

while the desired arm angle trajectories are tracked

using a combination of feedforward and PID feedback

controllers. Tracking desired position trajectories qdx(t)
by tracking planned shape trajectories qps (t) is open-loop
as there is no feedback on the position configurations.

This open-loop procedure cannot ensure good tracking

of desired position trajectories when the system starts

at wrong initial conditions. Moreover, on real robots,

there are more issues such as modeling uncertainties,

unmodeled dynamics, nonlinear friction effects and noise

that will inhibit a good position trajectory tracking

performance. A feedback position tracking controller is

used to overcome all these issues as shown in Fig. 4.

The feedback position tracking controller tracks

planned position trajectories qpx(t), which are feasible

approximations to desired position trajectories qdx(t). The
feedback position tracking controller is a Proportional-

Derivative (PD) controller that outputs compensation

shape trajectories qcs(t), which compensate for the er-

ror in tracking planned position trajectories qpx(t). The
planned shape trajectories qps (t) and compensation shape

trajectories qcs(t) are combined to produce the desired

shape trajectories qds (t) as follows:

qds (t) = qps (t) + qcs(t). (36)

It is important to note that the feedback position tracking

controller is different from the shape trajectory tracking

controller as shown in Fig. 4. The feedback position

tracking controller is capable of handling wrong initial

conditions, uncertainties in the environment like uneven

Shape-Accelerated
Balancing Systems

q (t)

q (t)
Shape Tracking

Controller

t(t)q (t)

+
–

q (t)

+ Position Tracking
Controller

+

q (t)

q (t) +
–

K d

dt+

q (t)G

–

+

q (t)¨

q (t)¨

q (t)¨

Shape Trajectory Planner

G

q (t)¨ Numerical
Integration

q (t)

d

s

c

s

p

s

p

x

d

x

ac

s

ac

x

x

d

x

net

x

p

x

s

q
x

2

2
Optimized

W

Fig. 4. Control architecture with the shape trajectory planner.

10

International Journal of Robotics Research (IJRR)
Volume 32, Issue 11, pp. 1323 – 1341, September 2013

floors and even small gradients. It is also capable of

handling small disturbances, and ensures good tracking

of the planned position trajectories qpx(t).

E. Characteristics of Desired Position Trajectories

The shape trajectory planner presented in this paper

requires that the desired position trajectories qdx(t) must

be at least of differentiability class C2, so that the desired

acceleration trajectories q̈dx(t) exist and are continuous.

However, it is preferred to have qdx(t) be of differen-

tiability class C4 so that the planned shape trajectories

qps (t) and their first two derivatives (q̇ps (t), q̈
p
s (t)) that

depend on them exist and are continuous.

Moreover, the desired position trajectories must satisfy

acceleration bounds that depend on the shape configura-

tions used to achieve these motions. The planner plans

shape trajectories that are linearly proportional to desired

acceleration trajectories in the position space, and will

fail to achieve good tracking if it is outside this linear

region. The acceleration bounds on desired position

trajectories are used to limit the motions of a shape-

accelerated balancing system to this linear neighborhood,

and are also used to account for actuator saturations. The

nonlinear map Γ′(qs) in Eq. 15 of the ballbot with arms

as a function of the body angle and as a functon of the

arm angle are shown in Fig. 5.

Figure 5(a) shows that the nonlinear map Γ′(qs) is

approximately linear w.r.t. the body angle upto a body

lean of 30◦, which is the lean at which the cylindrical

structure of the body makes contact with the floor.

Therefore, the nonlinear map Γ′(qs) is approximately

linear for the entire range of body angle values of

interest. However, in this work, the acceleration bounds

are limited to 2 m/s2 in order to avoid actuator satu-

rations and large accelerations. This acceleration bound

corresponds to a maximum body lean of 10◦ as shown

by the highlighted region in Fig. 5(a).
For an arm with 1 kg mass at its end, Fig. 5(b) shows

that the nonlinear map Γ′(qs) is approximately linear

w.r.t. the arm angle upto 55◦, which corresponds to a ball

acceleration of 0.082 m/s2 as shown by the highlighted

region. This value is used as the acceleration bound while

using arm motions to achieve desired motions on the

floor. Larger masses at the end of the arms will result in

larger accelerations in the position space. However, for

arms with 1 kg masses, it can be seen that significantly

larger accelerations can be achieved using body motions

than using arm motions. The linear approximation of the

nonlinear map Γ′(qs) works well within these bounded

regions, and these acceleration bounds are large enough

to accommodate the navigation needs of a balancing

B
al
l

A
cc
el
er
at
io
n

(m
/s
2
)

Body Angle (◦)

Bounded
Region

0 10 20 30
0

2

4

6

8

(a)

Bounded
Region

B
al
l

A
cc
el
er
at
io
n

(m
/s
2
)

Arm Angle (◦)
0 30 60 90

0

0.05

0.1

0.15

(b)

Fig. 5. Nonlinear function of ball acceleration vs. shape configuration
for the ballbot with arms: (a) Body Angle; (b) Arm Angle.

mobile robot like the ballbot. These bounds were used

for all the experimental results presented in Sec. V.

F. Performance Comparison against Direct Collocation

Methods

Direct collocation methods (Hargraves and Paris 1987;

von Stryk 1993; von Stryk and Bulirsch 1992) have

emerged as popular numerical techniques to generate

feasible trajectories for nonlinear systems. The state and

control trajectories are discretized into finite collocation

points, and the trajectory generation is solved as an

optimization problem subject to nonlinear constraints

given by the equations of motion of the system.

Table II compares the performance of PROPT

(Rutquist and Edvall 2010), a fast optimal control plat-

form for MATLAB that uses direct collocation methods

against that of the shape trajectory planner presented

in this paper on four different shape-accelerated bal-

ancing systems listed. The trajectory optimization was

performed using the SNOPT solver (Gill et al. 2005) on

PROPT. The shape trajectory planner presented in this

paper was implemented using the lsqnonlin function in

MATLAB, which uses the Levenberg-Marquardt Algo-

rithm (LMA) (Levenberg 1944) for optimization. Here,

the objective was to minimize the sum of squared error

in tracking a desired straight line position space motion

of 2 m in 5 s with a functional tolerance of <10−3 m2.

The PROPT implementation used 101 collocation points

for each state, which were necessary for generating

reasonably smooth trajectories.

The shape trajectory planner presented in this paper

is able to generate feasible trajectories at 28−72 times

faster speeds than PROPT on a standard Core2-Duo

processor. The computation times listed are average

values over 10 runs. This speed is not surprising as

the optimization is performed on a much smaller pa-

rameter space compared to that of the direct collocation

method. Moreover, the shape planner uses only the

dynamic constraint equations, whereas PROPT uses all

the equations of motion as constraints. The position

11

International Journal of Robotics Research (IJRR)
Volume 32, Issue 11, pp. 1323 – 1341, September 2013

TABLE II
PERFORMANCE COMPARISON

System (No. of states)
Computation Time (s)

Speed Factor
Position Tracking RMSE (m)

PROPT Shape Planner PROPT Shape Planner

Planar cart-pole (4) 27.581 0.482 57× 0.1143 0.0211

Planar ballbot (4) 20.729 0.485 43× 0.1154 0.0391

3D ballbot without arms (8) 27.362 0.991 28× 0.1159 0.0478

3D ballbot with arms (16) 955.6529 13.318 72× 0.1148 0.0462

trajectories obtained from the shape planner have RMSE

that are about 2−5 times smaller than those obtained

from PROPT.

It is important to note that the direct collocation

results presented in Table II were obtained with the state

trajectories initialized to zero. However, when the direct

collocation methods were initialized to the planned shape

trajectories obtained from the shape trajectory planner,

they improved the feasible configuration trajectories and

achieved lower tracking errors. The direct collocation

methods also performed better when the state trajectories

were initialized to the shape trajectories obtained from

transforming the desired acceleration trajectories using

the linear map K0
qs

in Eq. 24. Therefore, the key point is

that the direct collocation methods perform better when

the state trajectories have good initial guesses. The shape

trajectory planner can also be used to provide such an

initial guess to the direct collocation methods.

It is also important to note that direct collocation

methods can be used for any arbitrary dynamic system,

whereas the shape trajectory planner presented in this

paper is restricted to shape-accelerated balancing sys-

tems. The computation times presented in Table II are

for a MATLAB implementation of the shape trajectory

planner, and a well optimized C/C++ implementation can

provide the results an order of magnitude faster, which

allows real-time planning on the robot.

V. EXPERIMENTAL RESULTS WITH THE BALLBOT

The shape trajectory planner and the control architec-

ture presented in Sec. IV were experimentally validated

on the ballbot with arms shown in Fig. 1(b). The arms

had 1 kg masses at their ends for the experiments

presented in this section. The balancing controller was

used to track the desired body angle trajectories, while

the trajectory tracking controller for the arms used the

computed torque method (Murray et al. 1994) for feed-

forward terms and a PID position controller for feedback

control (Nagarajan et al. 2012). Different weight matri-

ces were picked to select and relatively weigh the body

and arm motions.

Unless mentioned otherwise, the desired position tra-

jectories are nonic (ninth degree) polynomials that satisfy

all the preferred characteristics of desired position tra-

jectories discussed in Sec. IV-E. For all the experimental

results presented in this section, the chosen desired

position trajectories cannot be exactly tracked and hence,

the shape trajectory planner finds the feasible trajectories

that approximate the desired motion. The ball position

tracking error presented in this section is the error

between the actual ball position and planned (feasible

but approximate) ball position trajectories, and is due to

modeling uncertainties and nonlinear friction effects in

real robot experiments. The ball position and velocity

data presented in this section were obtained from the

encoders on the ball motors, and no extrinsic sensors

were used for localization. The videos of the ballbot

successfully achieving the experimental results presented

here can be found in Extension 1.

A. Pure Body Motion

Figure 6 shows the ballbot without arms successfully

tracking a fast, straight line motion of 1.414 m in 4 s with

a root-mean-square error (RMSE) of 0.018 m. During

this motion, the ballbot reached a peak velocity of

1.18 m/s and a peak acceleration of 1 m/s2. The planned

and compensation body angle trajectories are shown in

Fig. 7(a). The compensation body angle trajectory is

provided by the feedback position tracking controller,

and is summed with the planned body angle trajectory to

produce the desired body angle trajectory that is tracked

by the balancing controller. The resulting body angle

Time (s)

T
ra
ck
in
g

E
rr
o
r
(m

)

B
al
l

P
o
si
ti
o
n
(m

)

0 1 2 3 4 50 1 2 3 4 5

−0.2

−0.1

0

0.1

0.2

0

0.5

1

1.5

Fig. 6. Pure Body Motion - Tracking a fast, straight line ball motion.

12

International Journal of Robotics Research (IJRR)
Volume 32, Issue 11, pp. 1323 – 1341, September 2013

Time (s)

C
o
m
p
en
sa
ti
o
n

B
o
d
y
A
n
g
le

(◦
)

P
la
n
n
ed

B
o
d
y

A
n
g
le

(◦
)

0 1 2 3 4 50 1 2 3 4 5
−0.4

−0.2

0

0.2

0.4

−6

−3

0

3

6

(a)

Time (s)

T
ra
ck
in
g

E
rr
o
r
(◦
)

B
o
d
y

A
n
g
le

(◦
)

0 1 2 3 4 50 1 2 3 4 5
−1

−0.5

0

0.5

1

−6

−3

0

3

6

(b)

Fig. 7. Tracking a desired fast, straight line ball motion using only
body motions: (a) Planned and compensation body angle trajectories,
(b) The resulting body angle trajectory and the tracking error in
achieving the desired body angle trajectory, which is a sum of the
planned and compensation body angle trajectories.

trajectory and the error in tracking the desired body angle

trajectory are shown in Fig. 7(b).

Let’s compare the straight line tracking performance

in Fig. 6 against that in Fig. 8, which is the result of

using the LQR controller in (Lauwers et al. 2006) to

track a desired straight line motion of 0.707 m in 20 s.

This motion is similar to the one shown in Fig. 11 of

(Lauwers et al. 2006). Unlike the control architecture

shown in Fig. 4, the LQR controller in (Lauwers et al.

2006) is an unified full-state feedback controller that

tracks both desired position and body angle trajectories.

But it is extremely sensitive to modeling uncertainties

and nonlinear friction effects of a soft ball rolling on

a hard floor, and it often produces jerky motions. We

were unable to achieve successful tracking of motions

faster than 0.2 m/s with the ballbot using the LQR

controller in (Lauwers et al. 2006). On the other hand,

the control architecture (Sec. IV-D) of using a balancing

controller to stabilize the shape dynamics and an outer-

Time (s)

T
ra
ck
in
g

E
rr
o
r
(m

)

B
al
l

P
o
si
ti
o
n
(m

)

0 5 10 15 200 5 10 15 20
−0.1

0

0.1

0

0.4

0.8

Fig. 8. Tracking a desired straight line ball motion using the LQR
controller in (Lauwers et al. 2006).

Experimental
Desired

Y
(m

)

X (m)
−1.5−1−0.5 0 0.5

−0.5

0

0.5

1

1.5

Fig. 9. Pure Body Motion - Tracking a desired curvilinear ball motion.

loop controller to achieve position tracking has been ex-

perimentally demonstrated to be robust against modeling

uncertainties, nonlinear friction effects and even large

disturbances as described in (Nagarajan et al. 2009a,b,c).

We were also able to achieve fast and graceful motions

as shown in Fig. 6. It is important to note that the shape

trajectory planner presented in this paper is also robust to

the uncertainties in the actuator model and the nonlinear

friction effects since it is dependent only on the dynamic

constraint equations.

The ballbot with arms tracking a curvilinear ball

motion is shown in Fig. 9. The desired ball motion was

chosen to be a Bezier curve of degree n = 43 given by

[

xd
w(t)

ydw(t)

]

=

n
∑

i

n!

i!(n− i)!

(

1− t1

)n−i

ti1pi, (37)

where pi = [0, 0]T for i =0 to 19; pi = [0, 1]T for i =20

to 23; pi = [−1, 1]T for i =24 to 43; t1 = t/tf ∈ [0, 1]

Time (s)
T
ra
ck
in
g

E
rr
o
r
(◦
)

B
o
d
y

A
n
g
le

(◦
)

0 10 200 10 20
−0.2

−0.1

0

0.1

0.2

−1

−0.5

0

0.5

1

(a)

Time (s)

T
ra
ck
in
g

E
rr
o
r
(◦
)

B
o
d
y

A
n
g
le

(◦
)

0 10 200 10 20
−0.2

−0.1

0

0.1

0.2

−1

−0.5

0

0.5

1

(b)

Fig. 10. Tracking a desired curvilinear ball motion using only body
motions: (a) The resulting X body angle trajectory φx(t) and the
tracking error in achieving the desired X body angle trajectory φd

x(t);
(b) The resulting Y body angle trajectory φy(t) and the tracking error

in achieving the desired Y body angle trajectory φd
y(t).

13

International Journal of Robotics Research (IJRR)
Volume 32, Issue 11, pp. 1323 – 1341, September 2013

and tf = 10 s. It is important to note that any Bezier

curve of degree n ≥ 10 can be used as a candidate for

desired position trajectories as it will satisfy the preferred

characteristics of desired position trajectories discussed

in Sec. IV-E. The resulting body angle trajectories and

the tracking errors are shown in Fig. 10.

For both these experiments, the compensation body

angles remained within ±0.15◦, which demonstrates the

effectiveness of the shape trajectory planner. Moreover,

the arms were maintained at zero angles.

B. Pure Arm Motion

This section presents experimental results of the ball-

bot with arms achieving desired ball motions using just

the arm motions. The arms of the ballbot are lightweight

hollow alumnium tubes with 1 kg masses at the ends.

Figure 11 shows the robot tracking a desired straight

line motion of 2 m in the forward direction using just

the arm motions with a RMSE of 0.035 m. The planned

and compensation arm angle trajectories for the left arm

are shown in Fig. 12(a), and the desired arm trajectory

tracking performance is shown in Fig. 12(b). Similar

results were obtained for the right arm. The trajectory

tracking performance of the arm controller shown in

Fig. 12(b) will be significantly improved with the future

arm design, which will avoid the excessive backlash in

the current design. The composite frames from a video

of the ballbot achieving this motion is shown in Fig. 13.

The balancing controller maintained the body angles at

zero for these experiments.

Figure 14 shows the ballbot tracking a straight line

motion of 1 m in the lateral direction by moving its arms

sideways. The right arm is used to initiate the motion as

shown in Fig. 15(a), whereas the left arm is used to bring

the system to rest as shown in Fig. 15(b). The complete

motion is not performed on a single arm in order to

avoid self-collision. The desired motion is split into two

trajectories, one for the “acceleration-phase” that uses

only the right arm, and the other for the “deceleration-

phase” that uses only the left arm. Figure 16 shows

composite frames of the ballbot achieving the lateral

Time (s)

T
ra
ck
in
g

E
rr
o
r
(m

)

B
al
l

P
o
si
ti
o
n
(m

)

0 5 10 150 5 10 15
−0.2

−0.1

0

0.1

0.2

0

0.5

1

1.5

2

Fig. 11. Pure Arm Motion - Tracking a desired forward straight line
ball motion.

Time (s)

C
o
m
p
en
sa
ti
o
n

A
rm

A
n
g
le

(◦
)

P
la
n
n
ed

A
rm

A
n
g
le

(◦
)

0 5 10 150 5 10 15
−15
−10
−5
0
5
10
15

−60
−40
−20

0
20
40
60

(a)

Time (s)

T
ra
ck
in
g

E
rr
o
r
(◦
)

A
rm

A
n
g
le

(◦
)

0 5 10 150 5 10 15
−15
−10
−5
0
5
10
15

−60
−40
−20

0
20
40
60

(b)

Fig. 12. Tracking a desired straight line ball motion using only arm
motions: (a) Planned and compensation left arm angle trajectories,
(b) The resulting left arm angle trajectory and the tracking error in
achieving the desired left arm angle trajectory, which is a sum of the
planned and compensation left arm angle trajectories.

()a ()b ()c ()d

Fig. 13. Composite frames from a video of the ballbot achieving the
forward ball motion using only arm motions: (a) the robot starts at
rest; (b) the arms are moved forward to accelerate; (c) the arms are
moved backward to decelerate; and (d) the robot comes to rest.

Time (s)

T
ra
ck
in
g

E
rr
o
r
(m

)

B
al
l

P
o
si
ti
o
n
(m

)

0 5 10 150 5 10 15
−0.2

−0.1

0

0.1

0.2

0

0.5

1

1.5

Fig. 14. Pure Arm Motion - Tracking a desired lateral ball motion.

motion using just the arms. For both forward and lateral

motions, the compensation arm angles remained within

±5◦ and the balancing controller maintained the body

angles within ±0.05◦.

14

International Journal of Robotics Research (IJRR)
Volume 32, Issue 11, pp. 1323 – 1341, September 2013

Time (s)

T
ra
ck
in
g

E
rr
o
r
(◦
)

A
rm

A
n
g
le

(◦
)

0 5 10 150 5 10 15
−20

−10

0

10

20

−60

−30

0

30

60

(a)

Time (s)

T
ra
ck
in
g

E
rr
o
r
(◦
)

A
rm

A
n
g
le

(◦
)

0 5 10 150 5 10 15
−20

−10

0

10

20

−60

−30

0

30

60

(b)

Fig. 15. Tracking a desired lateral ball motion using only arm motions:
(a) The resulting right arm angle trajectory and the tracking error
in achieving its desired trajectory; (b) The resulting left arm angle
trajectory and the tracking error in achieving its desired trajectory.

()a ()b

Fig. 16. Composite frames from a video of the ballbot achieving the
lateral ball motion using only arm motions: (a) the right arm is moved
to accelerate; and (b) the left arm is moved to decelerate.

C. Arm and Body Motion

Figure 17 shows the ballbot equally using both body

and arm motions (50-50) to track a desired 2 m straight

line ball motion with a RMSE of 0.04 m. The planned

and compensation trajectories for the body angle and the

right arm angle are shown in Fig. 18(a) and Fig. 19(a)
respectively. The trajectory tracking performance for

Time (s)

T
ra
ck
in
g

E
rr
o
r
(m

)

B
al
l

P
o
si
ti
o
n
(m

)

0 5 10 150 5 10 15
−0.2

−0.1

0

0.1

0.2

0

0.5

1

1.5

2

Fig. 17. Arm and Body Motion - Tracking a straight line ball motion.

Time (s)

C
o
m
p
en
sa
ti
o
n

B
o
d
y
A
n
g
le

(◦
)

P
la
n
n
ed

B
o
d
y

A
n
g
le

(◦
)

0 5 10 150 5 10 15
−0.2

−0.1

0

0.1

0.2

−0.6

−0.3

0

0.3

0.6

(a)

Time (s)

T
ra
ck
in
g

E
rr
o
r
(◦
)

B
o
d
y

A
n
g
le

(◦
)

0 5 10 150 5 10 15
−0.2

−0.1

0

0.1

0.2

−0.6

−0.3

0

0.3

0.6

(b)

Fig. 18. Tracking a desired straight line ball motion using both
body and arm motions: (a) Planned and compensation body angle
trajectories, (b) The resulting body angle trajectory and the tracking
error in achieving the desired body angle trajectory, which is a sum of
the planned and compensation body angle trajectories.

Time (s)

C
o
m
p
en
sa
ti
o
n

A
rm

A
n
g
le

(◦
)

P
la
n
n
ed

A
rm

A
n
g
le

(◦
)

0 5 10 150 5 10 15
−10

−5

0

5

10

−30

−15

0

15

30

(a)

Time (s)

T
ra
ck
in
g

E
rr
o
r
(◦
)

A
rm

A
n
g
le

(◦
)

0 5 10 150 5 10 15

−10

−5

0

5

10

−30

−15

0

15

30

(b)

Fig. 19. Tracking a desired straight line ball motion using both
body and arm motions: (a) Planned and compensation right arm angle
trajectories, (b) The resulting right arm angle trajectory and the tracking
error in achieving the desired arm angle trajectory, which is a sum of
the planned and compensation arm angle trajectories.

the body angle and the right arm angle are shown in

Fig. 18(b) and Fig. 19(b) respectively. Similar results

were obtained for the left arm. Here, the compensation

body angles remained within ±0.06◦, and the compen-

sation arm angles remained within ±5◦.

15

International Journal of Robotics Research (IJRR)
Volume 32, Issue 11, pp. 1323 – 1341, September 2013

Time (s)

T
ra
ck
in
g

E
rr
o
r
(◦
)

A
rm

A
n
g
le

(◦
)

0 10 20 300 10 20 30
−20

−10

0

10

20

−90

−60

−30

0

30

(a)

Time (s)

T
ra
ck
in
g

E
rr
o
r
(◦
)

A
rm

A
n
g
le

(◦
)

0 10 20 300 10 20 30
−20

−10

0

10

20

−100

−50

0

50

100

150

(b)

Fig. 20. Tracking the additional arm constraint trajectory: (a) X angle
for the left arm; (b) Y angle for the right arm.

()a ()b ()c ()d

Fig. 21. Selected frames from a video of the ballbot achieving no
ball motion while the arms are constrained to trajectories between the
four goal configurations (a)−(d).

D. Constrained Arm Motion

The ballbot with arms was subjected to additional

asymmetric constraint trajectories for the arm angles

shown in Figs. 20. These arm motions were chosen to be

asymmetric so that tracking these arm trajectories will

result in the motion of the ball, if not compensated for.

Selected frames from a video of the ballbot tracking

these constraint trajectories, which consist of four dif-

ferent goal configurations are shown in Fig. 21.

These arm motions were meant to emulate the robot

waving its arms randomly. Since the arm angles are

constrained to these trajectories, they are unavailable for

shape trajectory planning and the shape trajectories were

planned only in the space of body angles (Fig. 22) to

keep the ball stationary within ±0.04 m of its initial

position as shown in Fig. 23.

Figure 24 shows the ballbot with arms tracking a

desired straight line motion of 2 m with a RMSE of

Time (s)

T
ra
ck
in
g

E
rr
o
r
(◦
)

B
o
d
y

A
n
g
le

(◦
)

0 10 20 300 10 20 30
−0.2

−0.1

0

0.1

0.2

−1

−0.5

0

0.5

(a)

Time (s)

T
ra
ck
in
g

E
rr
o
r
(◦
)

B
o
d
y

A
n
g
le

(◦
)

0 10 20 300 10 20 30
−0.2

−0.1

0

0.1

0.2

−1

−0.5

0

0.5

(b)

Fig. 22. Tracking a desired body angle trajectory to achieve no ball
motion while the arms are constrained: (a) X body angle, (b) Y body
angle.

Y
(m

)

X (m)
−0.04 0 0.04

−0.04

0

0.04

Fig. 23. Constrained Arm Motion - Ball motion while attempting to
keep it stationary.

Time (s)
T
ra
ck
in
g

E
rr
o
r
(m

)

B
al
l

P
o
si
ti
o
n
(m

)

0 10 20 300 10 20 30

−0.2

−0.1

0

0.1

0.2

0

0.5

1

1.5

2

Fig. 24. Tracking a desired straight line ball motion while the arms
are constrained to be horizontal.

Time (s)

T
ra
ck
in
g

E
rr
o
r
(◦
)

A
rm

A
n
g
le

(◦
)

0 10 20 300 10 20 30

−10

−5

0

5

10

0

30

60

90

Fig. 25. Tracking the additional constraint trajectory for the left arm.

0.027 m, while subjected to the additional constraint

16

International Journal of Robotics Research (IJRR)
Volume 32, Issue 11, pp. 1323 – 1341, September 2013

Time (s)

C
o
m
p
en
sa
ti
o
n

B
o
d
y
A
n
g
le

(◦
)

P
la
n
n
ed

B
o
d
y

A
n
g
le

(◦
)

0 10 20 300 10 20 30

−0.4

−0.2

0

0.2

0.4

−3

−2

−1

0

1

(a)

Time (s)

T
ra
ck
in
g

E
rr
o
r
(◦
)

B
o
d
y

A
n
g
le

(◦
)

0 10 20 300 10 20 30

−0.2

−0.1

0

0.1

0.2

−3

−2

−1

0

1

(b)

Fig. 26. Tracking a desired straight line ball motion while the arms are
constrained to be horizontal: (a) Planned and compensation body angle
trajectories, (b) The resulting body angle trajectory and the tracking
error in achieving the desired body angle trajectory, which is a sum of
the planned and compensation body angle trajectories.

of holding both its arms horizontally forward (90◦) as

shown in Fig. 25. The constraint arm trajectory consists

of three motions, namely, moving the arm from 0◦ to

90◦ in the forward direction, holding it at 90◦ while

completing the ball motion of 2 m and finally, moving

the arm back from 90◦ to 0◦. This experiment emulates

the robot navigating while carrying an object.

The planned and compensation body angle trajectories

are shown in Fig. 26(a) and the desired body angle

tracking performance is shown in Fig. 26(b). As shown

in Fig. 26, the body has to lean back to compensate

for the forward held arms, and has to lean forward and

backward about this angle to achieve the desired 2 m ball

motion. Composite frames from a video of the ballbot

performing this motion is shown in Fig. 27.

VI. CONCLUSIONS

This paper introduced shape-accelerated balancing

systems as a special class of underactuated systems to

which balancing mobile robots like the ballbot belong.

This paper presented a shape trajectory planner for such

systems that uses just the dynamic constraint equations

to plan shape trajectories, which when tracked will result

in approximate tracking of desired position trajectories.

The shape trajectory planning was reduced to an opti-

mization problem of finding a time-invariant linear map

(constant gain matrix) that transforms the desired accel-

eration trajectory in the position space to a planned shape

trajectory such that the sum of squared error between

()a ()b ()c

Fig. 27. Composite frames from a video of the ballbot achieving a
forward ball motion while the arms are constrained to be horizontal:
(a) the body is leaned back to compensate for the arm constraint and
then is leaned forward to accelerate; (b) the body is leaned farther back
to decelerate; and (c) the robot comes to rest while the body continues
to lean back to compensate for the arm constraint.

the acceleration trajectory resulting from tracking the

planned shape trajectory and the desired acceleration

trajectory in the position space is minimized. The shape

trajectory planner was also extended to handle additional

constraints on a subset of the shape configurations.

The shape trajectory planner was shown to generate

feasible state trajectories for shape-accelerated balancing

systems at significantly faster speeds (28−72 times) than

the trajectory optimization algorithms that use direct

collocation methods (Table II).

A feedback position trajectory tracking controller was

used in parallel with the shape trajectory planner to

achieve better tracking of desired position trajectories.

Successful experimental results on the ballbot with arms

were presented. The ballbot successfully tracked desired

ball motions by tracking pure body motions, pure arm

motions, their combinations, and also handled additional

constraints on the arms.

VII. FUTURE WORK

One needs to evaluate the robustness of the proposed

shape trajectory planner and the control architecture to

large disturbances. A navigation framework that uses

the shape trajectory planner and the control architecture

to achieve desired navigation tasks has been presented

in (Nagarajan et al. 2013). Several approaches towards

automatically choosing weight matrices for a given nav-

igation task can also be explored.

The shape trajectory planner presented in this paper

can be extended to plan for a combination of ma-

nipulation and navigation tasks. Section V-D presented

experimental results of the ballbot successfully achieving

desired navigation tasks using only body lean motions

while its arms were restricted to additional constraint tra-

jectories, which emulated manipulation tasks. However,

17

International Journal of Robotics Research (IJRR)
Volume 32, Issue 11, pp. 1323 – 1341, September 2013

no manipulation tasks were performed. For balancing

mobile robots like the ballbot, the navigation and manip-

ulation tasks are tightly coupled. One of the challenges

is that the weight of the object that is manipulated

plays a significant role in the robot’s balance and in

its navigation. A state estimator that actively estimates

the position of the net center of gravity of the robot

and the object is essential for successfully performing

such tasks. The shape trajectory planner will have to take

into account the manipulation trajectories, and also the

dynamics associated with the object’s motions. Another

challenge is that the robot’s body lean motions will

affect its manipulation trajectories as the robot will lean

with its arms attached to its body. Therefore, both the

manipulation planner and the shape space planner must

be coupled to successfully achieve both navigation and

manipulation tasks.

ACKNOWLEDGMENTS

The authors thank George Kantor and Howie Choset

for the many useful discussions we have had on this

topic. The authors owe great thanks to Byungjun Kim

for designing and building the arms for the ballbot and

also developing controllers for the same. This work was

supported in part by NSF Grants IIS-0308067 and IIS-

0535183. The authors also thank the reviewers whose

valuable comments and suggestions helped improve the

paper significantly.

REFERENCES

P. Deegan, B. Thibodeau, and R. Grupen. Designing a

self-stabilizing robot for dynamic mobile manipula-

tion. Robotics: Science and Systems - Workshop on

Manipulation for Human Environments, 2006.

P. Deegan, R. Grupen, A. Hanson, E. Horrell, S. Ou,

E. Riseman, S. Sen, B.Thibodeau, A. Williams, and

D. Xie. Mobile manipulators for assisted living in

residential settings. Autonomous Robots, 2007.

S. Devasia and B. Paden. Exact output tracking for

nonlinear time-varying systems. In IEEE International

Conference on Decision and Control, volume 3, pages

2346–2355, 1994.

S. Devasia, D. Chen, and B. Paden. Nonlinear inversion-

based output tracking. In IEEE Transactions on

Automatic Control, volume 41, pages 930–942, 1996.

N. Getz. Control of balance for a nonlinear nonholo-

nomic non-minimum phase model of a bicycle. In

American Control Conference, pages 148 – 151, 1994.

N. Getz and J. K. Hedrick. An internal equilibrium

manifold method of tracking for nonlinear nonmini-

mum phase systems. In American Control Conference,

pages 2241–2245, 1995.

N. H. Getz. Tracking with balance. In 13th IFAC

Triennial World Congress, San Francisco, USA, 1996.

P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An

SQP algorithm for large-scale constrained optimiza-

tion. SIAM Review, 47(1):99–132, 2005.

C. R. Hargraves and S. W. Paris. Direct trajectory

optimization using nonlinear programming and col-

location. AIAA J. Guidance, 10(4):338–342, 1987.

R. Hatton and H. Choset. Connection vector fields for

underactuated systems. In Proc. IEEE/RAS-EMBS

Int’l Conf. on Biomedical Robotics and Biomechatron-

ics, pages 451–456, 2008.

L. Havasi. ERROSphere: an equilibrator robot. pages

971–976, 2005.

S. Hirose. Biologically Inspired Robots: Snake-like

Locomotors and Manipulators. Oxford University

Press, Oxford, 1993.

R. Hollis. Ballbots. Scientific American, pages 72–78,

Oct 2006.

A. Isidori. Nonlinear Control Systems. Springer-Verlag,

1989.

A. Isidori and C. I. Byrnes. Output regulation of

nonlinear systems. IEEE Transactions on Automatic

Control, 35(2):131–140, 1990.

M. Kumagai and T. Ochiai. Development of a robot

balancing on a ball. Intl. Conf. on Control, Automation

and Systems, 2008.

M. Kumagai and T. Ochiai. Development of a robot

balancing on a ball - application of passive motion to

transport. In Proc. IEEE Int’l. Conf. on Robotics and

Automation, pages 4106–4111, 2009.

T. Lauwers, G. Kantor, and R. Hollis. One is enough! In

Proc. Int’l. Symp. for Robotics Research, Oct. 2005.

T. B. Lauwers, G. A. Kantor, and R. L. Hollis. A

dynamically stable single-wheeled mobile robot with

inverse mouse-ball drive. In Proc. IEEE Int’l. Conf.

on Robotics and Automation, pages 2884–2889, 2006.

K. Levenberg. A method for the solution of certain non-

linear problems in least squares. The Quarterly of

Applied Mathematics, 2:164–168, 1944.

A. Lewis, J. Ostrowski, R. Murray, and J. Burdick.

Nonholonomic mechanics and locomotion: The snake-

board example. In Proc. IEEE Int’l Conf. on Robotics

and Automation, pages 2391–2397, 1994.

J. E. Marsden and M. J. Hoffman. Elementary classical

analysis. W.H. Freeman, 1993.

R. M. Murray, Z. Li, and S. S. Sastry. A Mathematical

Introduction to Robotic Manipulation. CRC Press,

Berkeley, 1994.

U. Nagarajan. Dynamic constraint-based optimal shape

trajectory planner for shape-accelerated underactuated

18

International Journal of Robotics Research (IJRR)
Volume 32, Issue 11, pp. 1323 – 1341, September 2013

balancing systems. In Proc. Robotics: Science and

Systems, 2010.

U. Nagarajan. Fast and Graceful Balancing Mobile

Robots. PhD thesis, Carnegie Mellon University,

Pittsburgh, PA, 2012. CMU-RI-TR-12-16.

U. Nagarajan, G. Kantor, and R. Hollis. Trajectory

planning and control of an underactuated dynamically

stable single spherical wheeled mobile robot. In IEEE

Int’l. Conf. on Robotics and Automation, pages 3743–

3748, 2009a.

U. Nagarajan, G. Kantor, and R. Hollis. Human-robot

physical interaction with dynamically stable mobile

robots. 4th ACM/IEEE Int’l. Conf. on Human-Robot

Interaction, 2009b. (Short paper and video).

U. Nagarajan, A. Mampetta, G. Kantor, and R. Hollis.

State transition, balancing, station keeping, and yaw

control for a dynamically stable single spherical wheel

mobile robot. In IEEE Int’l. Conf. on Robotics and

Automation, pages 998–1003, 2009c.

U. Nagarajan, B. Kim, and R. Hollis. Planning in

high-dimensional shape space for a single-wheeled

balancing mobile robot with arms. In IEEE Int’l Conf.

on Robotics and Automation, pages 130–135, 2012.

U. Nagarajan, G. Kantor, and R. Hollis. Integrated

motion planning and control for graceful balancing

mobile robots. The International Journal of Robotics

Research, Special Issue on Motion Planning for Phys-

ical Robots, 2013.

Y. Nakamura. Advanced Robotics: Redundancy and

Optimization. Addison-Wesley, 1991.

J.A. Nelder and R. Mead. A simplex method for function

minimization. The Computer Journal, 7:308–313,

1964.

H. G. Nguyen, J. Morrell, K. Mullens, A. Burmeister,

S. Miles, N. Farrington, K. Thomas, and D. Gage.

Segway robotic mobility platform. In SPIE Proc.

5609: Mobile Robots XVII, Philadelphia, PA, 2004.

R. Olfati-Saber. Nonlinear control and reduction of

underactuated systems with symmetry II: Unactuated

shape variables case. In Proc. 40th IEEE Conference

on Decision and Control, pages 4164–4169, 2001.

G. Oriolo and Y. Nakamura. Control of mechanical

systems with second-order nonholonomic constraints:

Underactuated manipulators. In Proc. IEEE Conf. on

Decision and Control, pages 2398–2403, 1991.

J. Ostrowski and J. Burdick. Geometric perspectives on

the mechanics and control of robotic locomotion. In

Proc. Int’l Symp. on Robotics Research, pages 487–

504, 1995.

J. Ostrowski and J. Burdick. The geometric mechanics of

undulatory robotic locomotion. International Journal

of Robotics Research, 17:683–701, 1996.

J. P. Ostrowski. Computing reduced equations for robotic

systems with constraints and symmetries. IEEE Trans.

on Robotics and Automation, 15(1):111 –123, 1999.

Rezero. http://www.rezero.ethz.ch, 2010.

Per Rutquist and M. M. Edvall. PROPT - Matlab

Optimal Control Software. Tomlab Optimization Inc.,

Pullman, WA, USA, 2010.

E. Shammas, H. Choset, and A. Rizzi. Towards auto-

mated gait generation for dynamic systems with non-

holonomic constraints. In Proc. IEEE Int’l. Conf. on

Robotics and Automation, pages 1630–1636, 2006.

E. A. Shammas, K. Schmidt, and H. Choset. Natural gait

generation techniques for purely mechanical systems.

In Proc. IEEE Int’l Conf. on Robotics and Automation,

pages 3664–3669, 2005.

E. A. Shammas, H. Choset, and A. A. Rizzi. Towards a

unified approach to motion planning for dynamic un-

deractuated mechanical systems with non-holonomic

constraints. International Journal of Robotics Re-

search, 26:1075–1124, 2007a.

E. A. Shammas, H. Choset, and A. A. Rizzi. Geometric

motion planning analysis for two classes of underac-

tuated mechanical systems. International Journal of

Robotics Research, 26:1043–1073, 2007b.

M. W. Spong. The control of underactuated mechanical

systems. In First Int’l Conference on Mechatronics,

Mexico City, 1994.

M. Stilman, J. Olson, and W. Gloss. Golem Krang:

Dynamically stable humanoid robot for mobile ma-

nipulation. In IEEE Int’l Conf. on Robotics and

Automation, pages 3304–3309, 2010.

Y. Takahashi, S. Ogawa, and S. Machida. Step climbing

using power assist wheel chair robot with inverse

pendulum control. In Proc. IEEE Int’l Conf. on

Robotics and Automation, pages 1360–65, 2000.

O. von Stryk. Numerical solution of optimal control

problems by direct collocation. In Optimal Control,

Int’l Series in Numerical Mathematics, pages 129–

143, 1993.

O. von Stryk and R. Bulirsch. Direct and indirect meth-

ods for trajectory optimization. Annals of Operations

Research, 37(1):357–373, 1992.

19

International Journal of Robotics Research (IJRR)
Volume 32, Issue 11, pp. 1323 – 1341, September 2013

APPENDIX A: INDEX TO MULTIMEDIA EXTENSIONS

The multimedia extensions to this article are at:

www.ijrr.org.

Extension Type Description

1 Video This video shows the ballbot
achieving several desired motions
in the position space using pure
body motions, pure arm motions,
and combinations of the two. It
also shows the ballbot achieving
desired ball motions while the
arms are constrained.

20

International Journal of Robotics Research (IJRR)
Volume 32, Issue 11, pp. 1323 – 1341, September 2013

