
1

Integrated Motion Planning and Control for

Graceful Balancing Mobile Robots
Umashankar Nagarajan, George Kantor, and Ralph Hollis

Abstract—This paper presents an integrated motion
planning and control framework that enables balancing
mobile robots to gracefully navigate human environments.
A palette of controllers called motion policies is designed
such that balancing mobile robots can achieve fast, graceful
motions in small, collision-free domains of the position
space. The domains determine the validity of a motion
policy at any point in the robot’s position state space. An
automatic instantiation procedure that generates a motion
policy library by deploying motion policies from a palette
on a map of the environment is presented. A gracefully
prepares relationship that guarantees valid compositions
of motion policies to produce overall graceful motion is
introduced. A directed graph called the gracefully prepares
graph is used to represent all valid compositions of motion
policies in the motion policy library. The navigation tasks
are achieved by planning in the space of these gracefully
composable motion policies. In this work, Dijsktra’s al-
gorithm is used to generate a single-goal optimal motion
policy tree, and its variant is used to rapidly replan the
optimal motion policy tree in the presence of dynamic
obstacles. A hybrid controller is used as a supervisory
controller to ensure successful execution of motion policies
and also successful switching between them.

The integrated motion planning and control framework
presented in this paper was experimentally tested on the
ballbot, a human-sized dynamically stable mobile robot
that balances on a single ball. The results of successful
experimental testing of two navigation tasks, namely, point-
point and surveillance motions are presented. Additional
experimental results that validate the framework’s capa-
bility to handle disturbances and rapidly replan in the
presence of dynamic obstacles are also presented.

I. INTRODUCTION

Personal mobile robots will soon be roaming freely

in human environments, operating in our proximity and

interacting with us. They will provide an array of as-

sistive technologies that will augment our capabilities

and enhance the quality of our lives. Personal robots

U. Nagarajan is with Disney Research, Pittsburgh, PA 15213,
USA. This work was done when he was with The Robotics Insti-
tute, Carnegie Mellon University, Pittsburgh, PA 15213, USA. email:
umashankar@disneyresearch.com

G. Kantor and R. Hollis are with The Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA 15213, USA. email: kan-
tor@ri.cmu.edu, rhollis@cs.cmu.edu.

operating in human environments and interacting with

humans do not have to necessarily look like humans but

must move, act and interact like humans. They should

be tall enough for eye-level interaction, narrow enough

to navigate cluttered spaces, and should be able to move

with speed and grace comparable to that of humans.

However, traditional robotic locomotion platforms are

three or four-wheeled platforms that move slowly, and

have wide bases and low centers of gravity. They are

statically stable robots, i.e., they stand still when pow-

ered down. A human-sized statically stable mobile robot

needs a wide base to have a large polygon of support,

and a lot of dead weight in the base to keep its center

of gravity as low as possible. A high center of gravity

and/or a small polygon of support can cause the robot

to tip over easily, which is undesirable. The chances

of tipping over drastically increase when lifting heavy

objects, and while moving up or down steep slopes

because the net center of gravity can shift outside the

polygon of support (Fig. 1). The wide bases, however,

make statically stable robots unsuitable for operation in

human environments that are often narrow and cluttered.

A. The Need for Balancing Robots

The drawbacks of statically stable mobile robots can

be avoided by building mobile robots that actively bal-

ance, just like humans do. Balancing mobile robots are

dynamically stable, and can be tall and skinny with

high centers of gravity. They can have small footprints

as they are continually balancing, and can accelerate

or decelerate quickly (Hollis 2006). Balancing mobile

robots can also avoid tipping by actively compensating

for the shift in center of gravity as shown in Fig. 1.

Moreover, balancing mobile robots are physically in-

teractive. People have the need to physically interact

with machines in their environments, especially when

they are their personal robotic assistants. Statically stable

robots need a multiplicity of sensors to detect mechani-

cal forces imparted to their bodies, whereas balancing

mobile robots are naturally reactive because they in-

herently respond to mechanical forces as disturbances

International Journal of Robotics Research (IJRR), Special Issue: Motion Planning for Physical Robots
Volume 32, Issue 9 – 10, pp. 1005 – 1029, September 2013

()a

tipping moment

v

v

()b

tipping moment

Fig. 1. (a) A statically stable robot can tip over when attempting to lift a heavy weight, whereas a balancing robot can lean to keep the net
center of gravity over the point of ground support. (b) A statically stable robot could tip when going up or down slopes, whereas a balancing
robot can stay balanced on slopes.

to their balancing behavior.This makes balancing robots

responsive to human touch (Nagarajan et al. 2009b). All

these characteristics make balancing mobile robots ideal

candidates for personal robotic assistants that move, act

and interact like humans.

B. Balancing Wheeled Robots

There has been a significant growth of interest in

developing balancing mobile robots in the last decade.

Two-wheeled balancing mobile robots became popular

after the introduction of the Segway Robotic Mobility

Platform (Nguyen et al. 2004). Rod Grupen and his

group introduced a two-wheeled balancing mobile robot

called uBot (Deegan et al. 2006), which is used as a

mobile manipulation research platform. They demon-

strated that balancing mobile robots can be effective

mobile manipulators with the ability to maintain pos-

tural stability, generate forces on external objects, and

withstand greater impact forces (Deegan et al. 2007).

Dean Kamen introduced iBot (iBOT 2003), a balancing

wheelchair, and demonstrated its advantages over its

statically stable counterparts. Anybots (Anybots 2010)

introduced a tele-presence robot that balanced on two

wheels. Mike Stilman and his group introduced Golem

Krang (Stilman et al. 2010), a two-wheeled balancing

mobile manipulator platform that has the capability to

autonomously stand and sit.

Our group introduced the ballbot (Hollis 2006; Lauw-

ers et al. 2005, 2006), the first successful dynamically

stable mobile robot that balances on a single ball. As

it moves on a ball, it is omnidirectional, and hence,

circumvents the limitations associated with the kine-

matic constraints of two-wheeled mobile robots. We

have demonstrated the robustness, dynamic motion, and

physical interaction capabilities of the ballbot in our

previous work (Nagarajan et al. 2009a,b,c). Recently,

several other groups have developed single-wheeled bal-

ancing mobile robots. Masaaki Kumagai developed the

BallIP (Kumagai and Ochiai 2008), and demonstrated

that ball balancing robots can be used for co-operative

transportation of wooden frames (Kumagai and Ochiai

2009). A group of mechanical engineering students at

ETH Zurich developed the Rezero (Rezero 2010), and

re-emphasized the dynamic capabilities of ball balancing

mobile robots.

C. The Need for Graceful Motion

Balancing mobile robots are capable of moving with

speed and grace comparable to that of humans. The

objective of the work presented in this paper is to enable

balancing mobile robots like the ballbot to achieve

graceful navigation in human environments. In this work,

graceful motion is defined as any feasible robot motion in

which its configuration variables’ position, velocity and

acceleration trajectories are continuous and bounded

with low jerk.

Apart from being visually appealing, a graceful robot

motion has a variety of advantages. Graceful, low jerk

motions result in smoothed actuator loads (Kyriakopou-

los and Saridis 1988) because jerk is directly propor-

tional to the torque rate of actuators. High jerk motions,

on the other hand, can excite resonant frequencies of the

robot, which can drive a balancing system unstable.

It has been shown in biomechanics literature that hu-

mans tend to move such that their movements minimize

jerk (Hogan 1984). Minimum-jerk models have been

proposed to model arm movements (Flash and Hogan

1985), and are used in various rehabilitation and haptic

applications (Amirabdollahian et al. 2002). Smoothness

is a characteristic of unimpaired human movements,

2

International Journal of Robotics Research (IJRR), Special Issue: Motion Planning for Physical Robots
Volume 32, Issue 9 – 10, pp. 1005 – 1029, September 2013

and humans generally associate “high jerk” motions to

“panic” motions (Amirabdollahian et al. 2002; Rohrer

et al. 2002). Therefore, humans are unlikely to feel

comfortable around robots that have high jerk, non-

smooth (ungraceful) motions.

Moreover, personal mobile robots operating in human

environments are likely to engage in physical interac-

tions with humans, wherein high jerk motions can be

undesirable as humans interacting with the robots will

also experience the same. Therefore, in order to build

successful personal robots that operate and interact in

human environments, it is important to ensure that they

have graceful motions.

D. The Need for Integrated Planning and Control

The objective of the work presented in this paper

is to enable balancing mobile robots to achieve grace-

ful navigation in human environments. Traditionally,

motion planning and control for mobile robots have

been decoupled. A high-level motion planner plans a

collision-free path, and a low-level controller tracks it.

The motion planner does not understand the capabilities

and limitations of the controller, while the controller has

no knowledge of the environment and the obstacles in it.

This decoupled approach works well in achieving navi-

gation tasks for kinematic mobile robots whose dynamics

can be safely ignored, but for balancing mobile robots

with significant dynamics, such a decoupled approach

generally results in sub-optimal and ungraceful motions.

Moreover, when subjected to disturbances, the decoupled

approach often results in collisions with obstacles or

drives the balancing system unstable.

Therefore, in order to make balancing mobile robots to

navigate human environments in a graceful and collision-

free manner, it is essential to integrate motion planning

and control. The motion planner must understand and

respect the constraints of both the system dynamics and

its controllers. The controller, on the other hand, must

be aware of the obstacles and navigation objectives.

E. Approach towards Graceful Navigation

This paper presents an integrated motion planning

and control framework based on sequential composi-

tion (Burridge et al. 1999; Conner et al. 2006; Nagarajan

et al. 2010) that enables balancing mobile robots like

the ballbot to achieve the desired navigation tasks while

moving gracefully.

The approach presented in this paper has two phases:

(i) an offline controller design phase, and (ii) an online

planning phase. In the offline controller design phase,

controllers called motion policies that track feasible state

trajectories called motion primitives are designed. A

palette of motion policies is designed such that the

individual motion policies result in graceful motion, and

there exist combinations of motion policies that are

gracefully composable. When two motion policies are

gracefully composable, they guarantee graceful switch-

ing between them, thereby resulting in an overall grace-

ful motion. In the online planning phase, a motion

policy library is generated by automatically instantiating

the motion policies from the palette to fill a map of

the environment. A motion planner plans in the space

of these gracefully composable collision-free motion

policies to achieve desired navigation tasks. This paper

is an extended and significantly improved version of the

paper presented in (Nagarajan et al. 2012a).

F. Contributions

The contributions of this paper are as follows:

(i) the notion of gracefully prepares relationship as

a restrictive definition on the prepares relationship

(Burridge et al. 1999; Conner et al. 2006), which

ensures graceful switching between motion poli-

cies (see Sec. IV-C);

(ii) an offline procedure to design a palette of mo-

tion policies, wherein the motion policies produce

collision-free graceful motions in small domains

of position space, and also gracefully prepare each

other (see Sec. IV);

(iii) an automatic instantiation procedure that fills a

map of the environment with motion policies from

a palette and generates a motion policy library (see

Sec. V-A);

(iv) a motion planner that plans in the space of mo-

tion policies that gracefully prepare each other to

achieve desired navigation tasks, and also replans

to avoid dynamic obstacles (see Sec. V-B and

Sec. V-D); and

(v) the experimental testing on the ballbot to success-

fully achieve two navigation tasks, namely, point-

point and surveillance motions, while handling

disturbances and dynamic obstacles (see Sec. VI).

II. RELATED WORK

The last decade has seen a large body of work on using

hybrid control techniques to integrate motion planning

and control. This section discusses some of the existing

work most relevant to the work presented in this paper.

A. Sequential Composition

Burridge et al. introduced Sequential Composi-

tion (Burridge et al. 1999), a controller composition

3

International Journal of Robotics Research (IJRR), Special Issue: Motion Planning for Physical Robots
Volume 32, Issue 9 – 10, pp. 1005 – 1029, September 2013

C

B

A

Goal

Fig. 2. Prepares relationship represented using funnels (Burridge et al.
1999).

technique that connects a sequence of control policies,

and automatically switches between them to generate

a globally convergent feedback control policy. Given a

set of control policies U = {Φ1, · · ·Φn}, each with an

invariant domain D(Φi) and a goal set G(Φi), a control

policy Φ1 is said to prepare another control policy Φ2,

denoted by Φ1 � Φ2, if the goal of the control policy

Φ1 lies inside the domain of the control policy Φ2, i.e.,
G(Φ1) ⊂ D(Φ2). The prepares relationship between

control policies can be represented using cascading fun-

nels, where one control policy leads to the other as

shown in Fig. 2. The stability and convergence of the

individual control policies guarantee the stability and

convergence of any valid sequence of control policies

given by the prepares relationship. Sequential compo-

sition was successfully applied to a variety of systems

(Kantor and Rizzi 2003; Klavins and Koditschek 2000;

Rizzi et al. 2001).

Conner et al. presented an integrated motion planning

and control procedure based on sequential composi-

tion to achieve navigation tasks for kinematic wheeled

robots (Conner et al. 2006). A map of the environment

was randomly filled with instantiations of a pre-defined

set of control policies using a partially automated pro-

cedure. The invariant domains for these control policies

were restricted to the configuration space of the system,

and the system dynamics were ignored.

In our previous work (Nagarajan et al. 2010), the

integrated motion planning and control procedure pre-

sented in (Conner et al. 2006) was extended to balancing

mobile robots like the ballbot. The system dynamics

were not ignored, and in fact, the control policies ex-

ploited the natural dynamics of the system to achieve

desired motions. All these approaches (Burridge et al.

1999; Conner et al. 2006; Nagarajan et al. 2010) ensured

stability and convergence of a sequential composition of

control policies, but did not guarantee graceful motion.

Although these approaches resulted in a robust system

that can navigate a map with obstacles under distur-

bances, the robot did not achieve graceful motion. This

paper presents a sequential composition based approach

that ensures overall graceful motion while still switching

between different control policies to achieve desired

navigation tasks.

B. Other Hybrid Control Approaches

Belta et al. presented a hybrid control policy with

piecewise affine control policies defined over sim-

plices (Belta et al. 2005). The motion planning was

performed in the space of simplices, and control policies

were designed over each simplex that induced the desired

closed-loop motion. This approach was presented only

for kinematic mobile robots, and it did not produce

overall graceful motion.

Frazzoli et al. presented Maneuver Automata (Fraz-

zoli et al. 2005) that used open-loop maneuvers and

steady-state trim trajectories as motion primitives, which

consisted of feasible state and control trajectories. They

used algorithms based on Rapidly-exploring Random

Trees (RRT) (LaValle and Kuffner 2001) for motion

planning in maneuver space, and demonstrated aggres-

sive maneuvering capabilities of autonomous helicopters

in simulations (Frazzoli et al. 2002). The algorithm

presented did not deal with coverage but rather, stopped

when a sequence of motion primitives to the goal was

found. Therefore, every time the state exited the defined

domain, the algorithm had to replan. They also presented

Robust Hybrid Automata (Frazzoli et al. 2000) that used

closed-loop control for its maneuvers. Although this

approach ensured overall stability of the closed-loop

system while switching between motion primitives, it did

not ensure closed-loop graceful motion.

Russ Tedrake introduced LQR-trees, a feedback mo-

tion planning algorithm that combines locally valid lin-

ear quadratic regulator (LQR) controllers into a non-

linear feedback policy that globally stabilizes a goal

state (Tedrake 2009; Tedrake et al. 2010; Tobenkin

et al. 2011). The controllable subset of the state space

was probabilistically covered by verified stability re-

gions of a sparse set of LQR-stabilized trajectories. The

estimation and verification of the stability regions are

computationally expensive, and hence do not allow real-

time planning. However, these approaches to estimate

invariant domains for control policies can be used in the

design of motion policies presented in this paper.

4

International Journal of Robotics Research (IJRR), Special Issue: Motion Planning for Physical Robots
Volume 32, Issue 9 – 10, pp. 1005 – 1029, September 2013

C. Hybrid Motion Planning Approaches

Hauser et al. demonstrated successful humanoid walk-

ing on uneven terrains in simulation (Hauser et al.

2008). Unlike approaches that limit the derived mo-

tions to the motion primitives, they used motion prim-

itives to derive sampling strategies for a probabilistic

sampling-based planner that generated new motions.

Plaku et al. developed SyCLoP (Plaku et al. 2010), a

motion planning algorithm for systems with dynamics,

which synergistically combines high-level discrete plan-

ning and low-level motion planning. They demonstrated

fast motion planning for ground and flying vehicles,

with computation times up to two orders of magni-

tude faster than other kinodynamic motion planners

like RRT (LaValle and Kuffner 2001) and Expansive

Space Trees (EST) (Hsu et al. 2001). Phillips et al.

introduced Experience Graphs (E-Graphs), a fast motion

planning algorithm that uses motion plans from its

previous planning experience to rapidly generate motions

for mundane, similar tasks (Phillips et al. 2012). They

successfully demonstrated navigation and manipulation

tasks with Willow Garage’s PR2 robot (PR2 2009). None

of these hybrid motion planning approaches integrate the

design of feedback controllers with motion planning for

dynamic systems, which is the focus of this paper.

III. BACKGROUND

This section introduces the ballbot, its 3D dynamic

model, its shape variables, and shape-accelerated balanc-

ing systems. It also briefly describes the shape trajectory

planner and the control architecture that play a key role

in the design of motion policies.

A. The Ballbot

The ballbot, shown in Fig. 3(a), is a human-sized

dynamically stable mobile robot that balances on a single

ball. The ball is actuated using an inverse mouse-ball

drive with four active rollers. A pair of opposing rollers

drive the ball in each of the two orthogonal motion

directions on the floor, and the encoders on the ball

motors provide odometry information for the ball.An

inertial measurement unit (IMU) provides the body lean

angles w.r.t. gravity. A more detailed description of the

ballbot’s hardware and its control architecture can be

found in (Nagarajan et al. 2009c).

For the work presented in this paper, the 3D ballbot is

modeled as a rigid cylinder on top of a rigid sphere with

the following assumptions: (i) there is no slip between

the ball and the floor, (ii) the floor is flat and level, and

(iii) the body does not yaw, i.e., it does not rotate about
its vertical axis.

(a)

Y

X

Z

w

w

w
r

y
w

xw

Yb

Zb

Xb

Zb
/

Xb
/

Zb
//

Yb
//

Body
CoM

b
x

b

y

w

(b)

Fig. 3. (a) The ballbot balancing; (b) 3D ballbot model with its
configurations. The ball position w.r.t. the world frame is given by
(xw, yw) and the body angles w.r.t. the body frame are given by pitch
angle θ

y

b
(rotation about Yb) and roll angle θx

b
(rotation about X′

b
).

The kinematics of a ball rolling on a plane has

been extensively studied using the plate-ball system for

manipulation (Agrachev and Sachkov 1999; Bicchi and

Sorrentino 1995; Oriolo et al. 2003). The plate-ball

system consists of a ball rolling between two flat and

level planes, wherein one of the planes is fixed, while the

other is used to move the ball. A ball rolling on a plane

has five configurations, two configurations for the ball

position and three configurations for the ball orientation,

and it has been proved to be controllable (Li and Canny

1990; Marigo and Bicchi 2000).

However, in this paper, we are interested only in the

position of the ball and not in its orientation. For each

orthogonal motion direction on the floor, the kinematic

mapping between the plate velocity and linear velocity

of the center of the ball is linear, and it is decoupled

from the plate velocity in the other orthogonal motion

direction (Brockett and Dai 1993).

Figure 3(b) shows the configurations of the 3D ballbot

model used in this paper. The origin of the world frame

is fixed to the initial position of the center of the ball.

Since we have assumed a flat and level floor, the position

(xw, yw) of the center of the ball matches the position

of the ball’s contact point on the floor. The ball position

(xw, yw) can be obtained by integrating the velocity of

the center of the ball. The body axis of the robot is given

by the line connecting the center of mass (CoM) of the

body to the center of the ball. The orientation of the body

axis w.r.t. the vertical is given by pitch angle θyb and roll

angle θxb as shown in Fig. 3(b). These body angles are

directly measured by the IMU.

The ball position (xw, yw) w.r.t. the world frame

is given by configurations (θxw, θ
y
w) such that xw =

5

International Journal of Robotics Research (IJRR), Special Issue: Motion Planning for Physical Robots
Volume 32, Issue 9 – 10, pp. 1005 – 1029, September 2013

rw(θ
x
w + θyb) and yw = rw(θ

y
w − θxb), where rw is

the radius of the ball. It is important to note that the

configurations (θxw, θ
y
w) are angular configurations that

represent the ball position, and they do not represent the

orientation of the ball. Therefore, θxw, θ
y
w ∈ (−∞,∞).

There are two advantages in choosing these coordinates:

one is that the ball position configurations (θxw, θ
y
w)

directly correspond to the encoder readings on the ball

motors, and the other is that this coordinate choice allows

one to remove the input coupling between the ball and

the body from the equations of motion.

The work presented in this paper deals only with

the translation of the ballbot on the floor and does

not deal with yaw motions, i.e., rotations about the

body axis. However, the ballbot has an independent yaw

mechanism that enables rotation about its body axis. The

yaw controller presented in (Nagarajan et al. 2009c) can

be independently used to achieve desired robot headings.

In fact, for all the experimental results presented in

Sec. VI, the yaw controller was used to ensure that the

body did not yaw while the ballbot was in motion.

B. Position and Shape Variables

The configuration space of any dynamic system can be

divided into position and shape space. The position vari-

ables qx represent the position of the robot in the world,

and the robot dynamics are invariant to transformations

of its position variables. However, the shape variables

qs affect the inertia matrix of the system and dominate

the system dynamics. For the 3D ballbot model, the ball

position configurations form its position variables, i.e.,
qx = [θxw, θ

y
w]

T ∈ R
2×1, while the body angles form its

shape variables, i.e., qs = [θxb , θ
y
b]

T ∈ R
2×1.

The ballbot is an underactuated system (Spong 1998),

i.e., the number of independent control inputs is less than

the number of degrees of freedom. The ball is actuated

while the body is not. Hence, the ballbot’s position

variables qx are actuated, while its shape variables qs
are unactuated.

C. Dynamic Constraints

The Euler-Lagrange equations of motion of the 3D

ballbot model can be written in matrix form as follows:

M(q)q̈ + C(q, q̇)q̇ +G(q) =

[

τ
0

]

, (1)

where, q = [qx, qs]
T ∈ R

4×1, M(q) ∈ R
4×4 is the

mass/inertia matrix, C(q, q̇) ∈ R
4×4 is the Coriolis

and centrifugal matrix, G(q) ∈ R
4×1 is the vector of

gravitational forces and τ ∈ R
2×1 is the vector of

generalized forces.

The last two equations of motion in Eq. 1 correspond-

ing to the unactuated shape variables, i.e., the body lean

angles, are of the form:

Θ(qs, q̇s, q̈s, q̈x) = 0. (2)

These second-order differential equations are not in-

tegrable, and hence form second-order nonholonomic

constraints (or) dynamic constraints (Oriolo and Naka-

mura 1991). However, they are numerically integrable.

It can be seen from Eq. 2 that the dynamic constraint

equations are independent of the position and velocity of

the position variables (qx, q̇x). They map the position,

velocity and acceleration in shape space (qs, q̇s, q̈s) to
the acceleration in position space q̈x, and vice-versa.

The dynamic constraint equations for balancing mobile

robots like the ballbot have a special structure wherein

any non-zero shape configuration results in acceleration

in position space as shown in our previous work (Nagara-

jan 2010; Nagarajan et al. 2012b). Hence, these systems

are called shape-accelerated balancing systems.

D. Planning in Shape Space

This section briefly describes a shape trajectory

planner that exploits the natural dynamics of shape-

accelerated balancing systems like the ballbot to achieve

desired motions in position space. Navigation tasks are

generally posed as desired motions in position space,

without any specifications on shape space motions. How-

ever, shape space motions cannot be ignored for highly

dynamic systems like the ballbot because there is a

strong coupling between their shape and position dy-

namics. Since the shape dynamics dominates the system

dynamics, any desired motion in position space can be

successfully achieved only if an appropriate motion in

shape space is planned and tracked.

In our previous work (Nagarajan 2010; Nagarajan

et al. 2012b), a trajectory planner that uses only the

dynamic constraint equations (Eq. 2) to plan shape tra-

jectories, which when tracked will result in approximate

tracking of desired position trajectories was presented.

This shape trajectory planner exploits the properties of

shape-accelerated balancing systems, and plans motions

in shape space that are proportional to desired acceler-

ations in position space. This section presents a brief

description of the shape trajectory planner, while a more

detailed presentation can be found in (Nagarajan 2010;

Nagarajan et al. 2012b).

From the dynamic constraint equations in Eq. 2, the

acceleration in position space can be written as a non-

linear function of shape variables and their derivatives

given by

q̈x = f(qs, q̇s, q̈s), (3)

6

International Journal of Robotics Research (IJRR), Special Issue: Motion Planning for Physical Robots
Volume 32, Issue 9 – 10, pp. 1005 – 1029, September 2013

subject to certain invertibility conditions, which hold

for shape-accelerated balancing systems as shown in

(Nagarajan 2010). When a shape-accelerated system

sticks to a constant shape configuration, i.e., q̇s = 0
and q̈s = 0, it can be shown that the system achieves

constant acceleration in position space given by

q̈x = f ′(qs), (4)

where f ′(qs) = f(qs, q̇s = 0, q̈s = 0). The Jacobian

linearization of the nonlinear map f ′(qs) around the

origin shows that an invertible linear map K0 exists

such that the constant shape configuration that produces

a constant acceleration in position space can be given by

qs = K0q̈x, (5)

where K0 ∈ R
2×2 for the 3D ballbot model presented in

Sec. III-A. But such an invertible map does not exist for

any arbitrary acceleration trajectory in position space.

However, the constant shape configuration case shows

that the shape configuration and the acceleration in

position space are linearly proportional to each other in

the neighborhood of the origin, and this insight is used to

design a trajectory planner that plans shape trajectories,

which when tracked will result in approximate tracking

of desired position trajectories. More details can be

found in (Nagarajan 2010).

Given a desired position space acceleration trajectory

q̈dx(t), the planned shape trajectory qps (t) is chosen to be

qps (t) = Kq̈dx(t), (6)

where K is a constant linear matrix, and K ∈ R
2×2

for the 3D ballbot model presented in Sec. III-A. The

acceleration trajectory in position space q̈px(t) that results
from tracking the planned shape trajectory qps (t) is

obtained from Eq. 3 as follows:

q̈px(t) = f(Kq̈dx(t),K
...
q d
x(t),K

...
q d
x(t)). (7)

The shape trajectory planning can be formulated as

an optimization problem with the objective of finding

elements of the constant linear matrix K such that the

resulting acceleration trajectory in position space q̈px(t)
best approximates the desired acceleration trajectory in

position space q̈dx(t), i.e., q̈
p
x(t) ≈ q̈dx(t). This optimiza-

tion can be solved using nonlinear least-squares solvers

like Nelder-Mead simplex (Nelder and Mead 1964) and

Levenberg-Marquardt (Levenberg 1944) algorithms. For

tracking constant desired accelerations in position space,

the matrix K0 (Eq. 5) will be the optimal solution for the

matrix K, whereas for any arbitrary desired acceleration

trajectory, the K0 forms a good initial guess for K.

A navigation task will generally involve tracking a

desired position trajectory and not an acceleration tra-

jectory. In order to use the shape trajectory planner, the

desired position trajectory qdx(t) must be at least of class

C2, i.e., q̇dx(t) and q̈dx(t) exist and are continuous, so

that the planned shape trajectory qps (t) = Kq̈dx(t) exists

and is continuous. However, the shape trajectory planner

prefers the desired position trajectory qdx(t) to be of class

C4, i.e.,
...
q d
x(t) and

....
q d

x(t) exist and are continuous, so

that the planned velocity and acceleration trajectories in

shape space (q̇ps (t), q̈
p
s (t)) that depend on them exist and

are continuous.

Moreover, tracking a desired position trajectory qdx(t)
is the same as tracking its corresponding acceleration

trajectory q̈dx(t) only if the initial conditions are met.

The initial conditions are rarely met on real robots, and

in addition, there are unmodeled dynamics, nonlinear

friction effects and noise. In order to solve these issues,

a feedback position tracking controller that feeds back

position variables is introduced. The feedback position

tracking controller outputs a compensation shape trajec-

tory that compensates for the deviation of the position

trajectory from the desired trajectory. The planned and

compensation shape trajectories are summed to form

the desired shape trajectory, which is tracked by the

balancing controller as shown in Fig. 4. The successful

tracking of a variety of different fast, dynamic motions in

position space using the shape trajectory planner and the

control architecture in Fig. 4 have been experimentally

demonstrated on the ballbot in (Nagarajan et al. 2012b).

Recently, a pair of 2-DOF arms were added to the

ballbot (Nagarajan et al. 2012b). The arm angles also

form shape variables, and a variant of the shape tra-

jectory planner presented here has been developed to

plan motions in high-dimensional shape space in order

to achieve desired motions in low-dimensional position

space. A detailed presentation of the shape trajectory

Shape-Accelerated
Balancing Systems

Position

Shape

Balancing
Controller

Motor
Input

Desired
Shape

+
-

Desired
Position

+

-
Feedback Position

Tracking Controller

Shape Trajectory Planner

+

Planned
Shape

Compensation
Shape +

Fig. 4. The control architecture.

7

International Journal of Robotics Research (IJRR), Special Issue: Motion Planning for Physical Robots
Volume 32, Issue 9 – 10, pp. 1005 – 1029, September 2013

planner that handles motions in high-dimensional shape

space is currently under review (Nagarajan and Hollis

2013). However, the work presented in this paper deals

only with the ballbot without arms. The shape trajectory

planner and the feedback position tracking controller

shown in Fig. 4 form the control architecture for motion

policies that will be presented in Sec. IV.

IV. MOTION POLICY DESIGN

This section describes an offline procedure of design-

ing a palette of control policies called motion policies

for shape-accelerated balancing mobile robots like the

ballbot using the shape trajectory planner and the control

architecture shown in Fig. 4. A motion policy Φi consists

of a reference state trajectory called a motion primitive

σi(t), a time-varying feedback trajectory tracking con-

trol law φi(t), and a time-varying domain Di(t) that

is verified to be asymptotically convergent. All these

components of a motion policy are described below.

A. Motion Primitives

Motion primitives σ(t) are elementary, feasible state

trajectories that produce motions in small domains of

the position space, and they can be combined sequen-

tially to produce more complicated trajectories. Motion

primitives are feasible state trajectories, and hence by

definition satisfy the constraints on the dynamics of

the system. In this work, the motion primitives are

defined such that they result in graceful motion, i.e.,
their position, velocity and acceleration trajectories are

continuous and bounded. Moreover, any valid sequential

composition of motion primitives must also result in an

overall graceful motion.

This paper follows (Frazzoli et al. 2005) to define two

classes of motion primitives:

(i) Trim primitives: Trim primitives are motion prim-

itives that correspond to steady-state conditions

and they can be arbitrarily trimmed (cut), i.e., the
time duration of the trajectory can be arbitrarily

chosen. In this work, the trim primitives are re-

stricted to constant position or velocity trajectories

in position space, which implies that they have zero

acceleration in position space and also zero shape

configurations.

(ii) Maneuvers: Maneuvers are motion primitives that

start and end at steady-state conditions given by the

trim primitives. Unlike trim primitives, maneuvers

have fixed time duration and non-zero acceleration

in position space, which implies that they achieve

non-zero shape configurations. However, maneu-

vers start and end at trim conditions, which cor-

respond to zero shape configurations. Maneuvers

can be any arbitrary feasible state trajectories as

long as they satisfy the trim conditions.

Here, the zero shape configurations correspond to any set

of shape configurations that produce zero acceleration

in position space. The motion primitives in (Frazzoli

et al. 2005) consisted of both feasible state and con-

trol trajectories, whereas the motion primitives in this

work include only feasible state trajectories. Motion

primitives can represent feasible state space motions that

produce different motions in position space like straight

line, turning, circular, S-curve or figure-8 motions.

A collection of motion primitives with a distance

parameter d is defined as a motion primitive set Σ(d),
wherein each motion primitive produces a net ∆x and

∆y motion in position space such that ∆x and ∆y
are integral multiples of the distance parameter d.
Figure 5 presents the position space motions of a sample

of motion primitives for the 3D ballbot model from a

motion primitive set Σ(d) with d = 0.5 m. It is important

to note that the motion primitives include both position

and shape trajectories, and are not restricted to just

position trajectories. Therefore, for the 3D ballbot model,

the motion primitives represent feasible motions in 8D

state space, while Fig. 5 shows only their corresponding

2D position space motions.

The number of motion primitives in a motion primitive

set Σ(d) is dependent on the “richness” of motions

one desires to achieve with the robot. For example, the

simplest and minimalist motion primitive set will consist

of just two motion primitives: a stationary (constant

position) trim primitive and a rest-to-rest maneuver that

End3

End2 End1

Start

Y
(m

)

X (m)
0 0.5 1

0

0.5

1

Fig. 5. Position space motions of a sample of motion primitives for
the 3D ballbot model from a motion primitive set with d = 0.5 m.

8

International Journal of Robotics Research (IJRR), Special Issue: Motion Planning for Physical Robots
Volume 32, Issue 9 – 10, pp. 1005 – 1029, September 2013

moves the robot a distance d. A balancing mobile robot

can indeed use these two motion primitives to stay in

place and move around. But any motion longer than

distance d will consist of a concatenation of several rest-

to-rest motions of distance d each, i.e., the robot stops

multiple times before coming to rest at the goal. This

minimalist motion primitive set is sufficient to achieve

a stationary goal, but it is not necessarily desirable.

Therefore, the number and type of motion primitives

in a motion primitive set Σ(d) depends on the motions

desired from the robot, and the larger and more varied

the motion primitive set is, “richer” are the motions

achieved using the motion primitive set.

The position space motions of the motion primitives

shown in Fig. 5 may strike a strong resemblance to

state lattices (Pivtoraiko and Kelly 2005; Pivtoraiko

et al. 2009) and path sets (Knepper and Mason 2008,

2009) used by the motion planners in unmanned ground

vehicles. State lattices and path sets are defined as

reference motions in only the position space, and the

motion planners plan in the space of these reference po-

sition space motions to achieve desired navigation tasks.

However, the motion primitives presented in this paper

are defined as feasible state space motions that include

both position and shape space motions, and the motion

planner plans in the space of motion policies, which are

controllers designed around these motion primitives as

will be described in Sec. IV-B. State lattices (Pivtoraiko

and Kelly 2005; Pivtoraiko et al. 2009) and path sets

(Knepper and Mason 2008, 2009), however, can be used

to determine the reference position space motions for

generating the motion primitive sets presented here.

The step-by-step procedure used in this work to de-

sign a motion primitive set for the 3D ballbot model,

including the one shown in Fig. 5 is as follows:

(i) The trim (or) steady-state conditions were defined.

The trim conditions used in this work were limited

to constant position and constant velocity condi-

tions in position space.

(ii) A number of unique, desired position space mo-

tions with a distance parameter d were chosen in

the first quadrant of the XY−plane. These desired

motions included constant position and constant

velocity trajectories given by the trim conditions

in step (i), and several other trajectories with

varying position and velocity in position space

whose start and end conditions satisfied the trim

conditions with zero acceleration in position space.

The desired trajectories in position space were de-

fined as nonic polynomials, i.e., polynomials with

degree nine, satisfying the desired boundary trim

conditions. The desired trajectories were chosen

such that they satisfy all characteristics of desired

position trajectories presented in Sec. III-D, and

also satisfy all requirements of a graceful motion,

i.e., the position, velocity and acceleration trajec-

tories are continuous and bounded with low jerk.

(iii) The shape trajectory planner presented in

Sec. III-D was used to obtain the feasible position

and shape trajectories that approximately achieve

the desired position space motions in step (ii). The
feasible state trajectories that produce constant

position and constant velocity motions in position

space are the trim primitives, while the rest

that satisfy the boundary trim conditions are

the maneuvers. Together, they form the motion

primitives in the motion primitive set Σ(d). It

is important to note that the trim conditions for

the trim primitives and the maneuvers match, and

hence these elementary state trajectories can be

composed to produce more complicated motions.

As described above, the motion primitives are de-

signed to have matching trim conditions, which enable

them to be composable. The necessary condition for

composability of motion primitives in a motion primitive

set Σ(d) is that for every trim condition in Σ(d), there
must exist a corresponding trim primitive, at least one

maneuver that starts with that trim condition and at

least one maneuver that ends with that trim condition.

The sufficient condition for strong composability of

motion primitives is that in addition to the necessary

condition for composability, for every ordered pair of

trim conditions, there must exist at least one maneuver

that transitions between them.

Each motion primitive in a motion primitive set

can be rotated and translated in the position space to

achieve a variety of different motions, and this process

of setting the position and orientation (heading) of a

motion primitive is called instantiation. This is possible

because the dynamics of mobile robots are invariant to

transformations of their position variables. It is important

to note that the entire motion primitive along with its

start and end trim conditions are invariant to rotations

and translations of the position variables.

In this work, the motion primitives in the motion prim-

itive set Σ(d) are designed to be strongly composable.

Hence, for each motion primitive σ1(t) ∈ Σ(d), there
exists at least one motion primitive σ2(t) ∈ Σ(d) such

that its instantiation is gracefully composable with σ1(t).
Moreover, for every ordered pair of motion primitives
(

σ1(t), σ2(t)
)

, there exists at least one motion primitive

σ3(t) ∈ Σ(d) such that an instantiation of σ3(t) is

9

International Journal of Robotics Research (IJRR), Special Issue: Motion Planning for Physical Robots
Volume 32, Issue 9 – 10, pp. 1005 – 1029, September 2013

Goal

Start

Y
(m

)

X (m)
0 1 2 3

0

1

2

3

Fig. 6. Position space motion of an example motion plan using
instantiated motion primitives from Fig. 5. The shaded circles represent
constant position trim conditions, while the bars represent constant
velocity trim conditions.

gracefully composable with σ2(t) and an instantiation

of σ1(t) is gracefully composable with σ3(t), i.e., there
exists instantiations such that σ1(t) → σ3(t) → σ2(t)
form a valid sequence of gracefully composable motion

primitives.

A motion primitive σ1(t) is gracefully composable

with another motion primitive σ2(t) if and only if

σ1(tf1) = σ2(0) and σ̇1(tf1) = σ̇2(0), i.e., the final

position, velocity and acceleration of σ1(t) matches the

initial position, velocity and acceleration of σ2(t). The
motion primitives in the motion primitive set Σ(d) with
matching trim conditions are designed such that they

are gracefully composable. Figure 6 shows an example

motion in position space resulting from a graceful com-

position of appropriately instantiated motion primitives

from a motion primitive set Σ(d) with d = 0.5 m.

It is important to note that although the motion primi-

tives can be rotated and translated in the position space,

they cannot be dilated, i.e., scaled to achieve shorter or

longer motions in position space. This is because the

dilation of feasible position and shape trajectories does

not necessarily result in feasible state trajectories, i.e.,
the resulting state trajectories do not necessarily satisfy

the dynamic constraint equations. However, one can

dilate the desired position space motions in step (ii) of
the motion primitive design process and find the feasible

shape and position trajectories that achieve them using

the shape trajectory planner as described in step (iii).

B. Motion Policies

The motion primitives presented in Sec. IV-A are fea-

sible state trajectories that satisfy the dynamic constraints

of the system, and also produce graceful motion by

construction. Any dynamic system requires control effort

to track these feasible state trajectories. In (Frazzoli et al.

2005), open-loop control trajectories were used as part of

the motion primitives. But in a real world, especially for

robots operating in human environments, where there are

environment uncertainties and perturbations, one needs

to use closed-loop control. This section presents motion

policies that contain motion primitives and feedback

controllers that stabilize them.

A motion policy Φi consists of a motion primitive

σi(t), a time-varying feedback tracking control law

φi(t), and a time-varying domain Di(t), all defined

for time t ∈ [0, tfi]. Since the entire motion policy

execution is time parameterized, each motion policy Φi

also contains a timer Ti that starts at zero and ticks

till the duration tfi of the motion primitive σi(t). A

motion policy that consists of a trim primitive is called

a trim policy, while a motion policy that consists of

a maneuver is called a maneuver policy. Since all

motion primitives in the motion primitive set Σ(d) are

feasible state trajectories, they can be stabilized using

locally linear feedback controllers, and hence a motion

policy Φi exists for each motion primitive σi(t) ∈ Σ(d).
Given a motion primitive set Σ(d), its corresponding

motion policy palette Π(Σ) is constructed by defining

a time-varying linear feedback control law φi(t) and its

time-varying domain Di(t) for every motion primitive

σi(t) ∈ Σ(d). Therefore, there is a one-to-one corre-

spondence between the motion primitive σi(t) ∈ Σ(d)
and the motion policy Φi ∈ Π(Σ). The approach used

in this work to design the feedback control law and its

domain are discussed below.

For every motion policy Φi ∈ Π(Σ), the feedback

control law φi(t) stabilizes its constituent motion prim-

itive σi(t) ∈ Σ(d). In general, standard approaches like

linear quadratic regulators (LQR) can be used to stabilize

the motion primitives. However, in this work, the motion

policies defined for shape-accelerated balancing mobile

robots like the ballbot use the control architecture shown

in Fig. 4, which exploits the strong coupling between

the dynamics of position and shape variables to achieve

desired motions in position space. This control archi-

tecture of using an inner-loop balancing controller that

stabilizes the shape dynamics and an outer-loop position

tracking controller that achieves desired position space

motions has been experimentally verified to be robust as

shown in (Nagarajan et al. 2009a,b,c). The ability of this

control architecture to successfully track desired motions

in position space has also been experimentally verified

on the ballbot as shown in (Nagarajan et al. 2012a,b)

10

International Journal of Robotics Research (IJRR), Special Issue: Motion Planning for Physical Robots
Volume 32, Issue 9 – 10, pp. 1005 – 1029, September 2013

G

D
′

D

S

Y
(m

)

X (m)
0 0.5 1

0

0.5

1

Fig. 7. XY projection of the domain of a sample motion policy
designed for the 3D ballbot model.

and in Sec. VI of this paper.

In general, the time-varying domain Di(t) of the

feedback control law φi(t) is defined to be the largest

invariant domain along the feasible state trajectory σi(t)
in the state space of the system. Lyapunov functions can

be used to determine these invariant domains, and recent

advancements in algebraic verification tools like sums-

of-squares (SOS) tools (Tedrake et al. 2010; Tobenkin

et al. 2011) make such computations a possibility. How-

ever, in this work, the motion policy domain definitions

are restricted to 4D position state space, i.e., (x, y, ẋ, ẏ),
since the control architecture of the motion policy shown

in Fig. 4 achieves motions in position space by control-

ling shape space motions.

The time-varying domains D(t) are defined as 4D

hyper-ellipsoids centered around the time-varying de-

sired position states of the motion primitives σ(t). Each
time-varying domain D(t) has a start domain S = D(0)
and a goal domain G = D(tf). Each domain D(t) is

verified to be asymptotically convergent, similar to the

ones defined in (Nagarajan et al. 2010). This implies

that each domain D(t) has another domain D′(t) defined
such that D(t) ⊂ D′(t) ∀t ∈ [0, tf], and any position

state trajectory starting in S will remain in D′(t) until it
reaches G ∀t ∈ [0, tf]. The overall domains for a motion

policy are given by D =

tf
⋃

t=0

D(t) and D
′ =

tf
⋃

t=0

D′(t).

The domain D
′ is used for checking collisions with

obstacles in the environment and hence, their geometric

definitions make it easier to verify the validity of their

motion policies. Figure 7 shows the XY projection of a

sample motion policy design for the ballbot.

In this work, the design and verification of the asymp-

totically convergent motion policy domains were done

using simulation. For a motion policy Φi, the radii of the

4D hyper-ellipsoids in the domain Di(t) were chosen to

be constant along the entire motion primitive σi(t), and
the outer domainD′

i(t) was designed asD
′

i(t) = kDi(t),
where k > 1 is the scale factor. For a choice of radii

values, the 3D ballbot model along with the control

architecture in Fig. 4 was simulated from finitely many

states in the start domain Si. The largest radii values for

which the closed-loop position state trajectory from each

of these start states remained inside the outer domain

D′

i(t) ∀t ∈ [0, tf] and also reached the goal domain

Gi at t = tf were determined by trial and error. These

radii values defined the motion policy domain Di(t).
It is important to note that the motion policy domain

obtained using the above described procedure is a con-

servative estimate of the largest invariant domain of the

motion policy. However, in this work, it is not essential

to have an accurate estimate of the largest invariant

domain, and a conservative estimate that is verified to

be asymptotically convergent satisfies the requirements

of the integrated motion planning and control framework

presented in this paper.

The above design procedure also verifies by simula-

tion that all position states in the start domain Si reach

the goal domain Gi and remain within D′

i(t) ∀t ∈ [0, tf]
under the action of the motion policy Φi. Addition-

ally, the resulting closed-loop shape trajectory was also

verified to remain within the domain of the balancing

controller that tracks it. Several system identification

experiments were conducted on the ballbot to estimate

the system parameters such that the dynamics of the

model better match the real robot dynamics (Nagarajan

et al. 2009c). When a motion policy Φi is deployed on

a map of the environment, the verification guarantees

that the resulting closed-loop motion of the system in

position state space will remain within its domain D
′

i.

Hence, if the domain D
′

i is collision-free, then the

motion policy Φi is guaranteed to produce a collision-

free closed-loop motion of the system.

The process of deploying a motion policy on a map

is called instantiation, just like in the case of a motion

primitive. A motion policy instantiation involves the

instantiation of its motion primitive and its feedback

control law. The condition for two motion primitives to

be gracefully composable was presented in Sec. IV-A.

Here, a time-varying feedback control law φ1(t) is

defined to be gracefully composable with another time-

varying feedback control law φ2(t) if φ1(tf1) = φ2(0),
i.e., the final control law of φ1 matches the initial control

law of φ2. These conditions will be used in Sec. IV-C

to define the graceful composition of motion policies.

11

International Journal of Robotics Research (IJRR), Special Issue: Motion Planning for Physical Robots
Volume 32, Issue 9 – 10, pp. 1005 – 1029, September 2013

C. Gracefully Prepares Relationship

This section introduces the notion of gracefully pre-

pares relationship that guarantees graceful sequential

composition of two motion policies. A motion policy Φ1

is said to gracefully prepare Φ2, denoted by Φ1 �G Φ2,

if and only if all the conditions listed below are satisfied.

(i) The goal domain of the motion policy Φ1 is

contained in the start domain of the motion policy

Φ2, i.e., G1 ⊂ S2.

(ii) The motion primitive σ1(t) of the motion policy

Φ1 is gracefully composable with the motion prim-

itive σ2(t) of the motion policy Φ2, i.e., σ1(tf1) =
σ2(0) and σ̇1(tf1) = σ̇2(0), which ensures that the

overall reference position, velocity and accelera-

tion trajectories are continuous. A motion primitive

σ(t) is a state trajectory, which includes position

and velocity trajectories. Therefore, its derivative

σ̇(t) includes velocity and acceleration trajectories.

(iii) The time-varying feedback control law φ1(t) of the
motion policy Φ1 is gracefully composable with

the feedback control law φ2(t) of the motion policy

Φ2, i.e., φ1(tf1) = φ2(0), which ensures that the

overall control trajectory is continuous.

The first condition satisfies the prepares relationship

(Burridge et al. 1999), while the next two conditions

reduce it to a gracefully prepares relationship. Hence,

a gracefully prepares relationship is by definition a

prepares relationship, i.e., Φ1 �G Φ2 ⇒ Φ1 � Φ2, but

not vice-versa. Since the reference position, velocity and

acceleration trajectories along with the control trajectory

are continuous, the resulting closed-loop motion of the

system under the action of a sequence of gracefully

composable motion policies is graceful. Moreover, the

stability and asymptotic convergence of the individual

motion policies in the motion policy palette guarantee

the stability and asymptotic convergence of any valid

sequence of instantiated motion policies given by the

gracefully prepares relationship. It is important to note

that the motion primitives in the motion primitive set

Σ(d) are designed to be strongly composable, and for

each pair of motion primitives σ1(t), σ2(t) ∈ Σ(d)
where σ1(t) is gracefully composable with σ2(t), their
corresponding motion policies Φ1,Φ2 ∈ Π(Σ) are de-

signed such that Φ1 gracefully prepares Φ2.

Figures 8 and 9 show the experimental results of the

ballbot achieving fast, graceful motions while switching

between gracefully composable motion policies. The

ballbot achieves a fast, graceful straight line motion in

Fig. 8 that is composed of three different motions. The

ballbot achieved a peak velocity of 1.16 m/s, a peak

acceleration of 1.1 m/s2, and a maximum lean of 6.75◦

in the plane of motion. In Fig. 9, the ballbot makes three

sharp left turns by gracefully switching between nine

gracefully composable motion policies. The videos of

the ballbot performing both these motions can be found

in Extension 1.

The sequence of gracefully composable motion poli-

cies used for the experimental results shown in Fig. 8 and

Fig. 9 were manually chosen, and the switching opera-

tion was also performed manually. Section V will present

automated approaches towards autonomous planning in

the space of gracefully composable motion policies to

achieve desired navigation tasks. It will also present a

hybrid control architecture that successfully executes the

motion plan.

Time (s)

V
el

o
ci

ty
 (

m
/s

)

B
o
d
y

A
n
g
le

 (
d
eg

)

()a ()b

1 2 3 4 5 6

1

2

3 4

5

6

Fig. 8. Fast straight line motion: (a) composite frames from a video, (b) plot of body angle and velocity vs. time in the plane of motion.

12

International Journal of Robotics Research (IJRR), Special Issue: Motion Planning for Physical Robots
Volume 32, Issue 9 – 10, pp. 1005 – 1029, September 2013

1

2

3

X (m)

Y
(m

)

1

2

3

()a ()b

Fig. 9. Sharp turning motion: (a) composite frames from a video, (b) plot of the motion tracked on the floor.

V. INTEGRATED MOTION PLANNING AND CONTROL

This section presents the online procedures that run

on-board the robot to achieve graceful navigation. An

automatic motion policy instantiation procedure is pre-

sented, which uses the motion policy palette to generate

a library of instantiated motion policies whose domains

fill an obstacle-free map of the environment. A motion

planner that plans in the space of these gracefully com-

posable motion policies, and a hybrid control architec-

ture that executes a generated motion plan are presented.

A dynamic replanning algorithm that actively replans in

the space of gracefully composable motion policies to

avoid dynamic obstacles is also presented.

A. Automatic Instantiation of Motion Policies

Here, an automatic instantiation procedure that uni-

formly distributes motion policies both in position and

in orientation (heading) on a 2D map of the environment

is presented. Given a motion policy palette Π(Σ), the
2D map M is defined as a grid that uniformly discretizes

the environment with instantiation points (x, y) that are
separated by a distance d along both X and Y directions,

where d is the distance parameter of the motion primitive

set Σ(d). Every motion policy Φi ∈ Π(Σ) is instantiated
at these instantiation points in different orientations

(headings).

The uniform discretization in orientation (heading)

space depends on the position space motions produced

by motion policies in the motion policy palette. The

motion policies presented here produce motions in the

first quadrant of the position space as shown in Fig. 5,

and hence the orientation spacing is chosen to be 90◦ so

that their instantiations can cover all four quadrants in

position space. It is important to note that the map M is

used only for the instantiation of motion policies and is

not used for localization. This is because the instantiation

map M has coarser grids, while an occupancy grid map

for localization needs to be finer. Finer occupancy grids

are used for localization of the ballbot in all experimental

results presented in this paper.

As described in Sec. IV-A, all motion primitives

σi(t) ∈ Σ(d) are feasible state trajectories that pro-

duce position space motions wherein their ∆x and ∆y
displacements are integral multiples of the distance pa-

rameter d. Therefore, the motion primitive set Σ(d) is a
collection of feasible state trajectories that move between

the grid points on the map M that is discretized by

d. Moreover, since the motion primitives in the motion

primitive set Σ(d) are designed to be strongly compos-

able and their corresponding motion policies in Π(Σ)
are designed to be gracefully composable, instantiated

motion policies with matching trim conditions can be

sequentially composed to gracefully navigate between

the grid points on the map.

The automatic instantiation procedure generates a mo-

tion policy library L(Π,M), which is a collection of

valid instantiations of motion policies from the motion

policy palette Π(Σ) on a map M. A subset of valid

instantiated motion policies from a motion policy library

on a map with static obstacles is shown in Fig. 10. An

instantiated motion policy Φi is considered valid if and

13

International Journal of Robotics Research (IJRR), Special Issue: Motion Planning for Physical Robots
Volume 32, Issue 9 – 10, pp. 1005 – 1029, September 2013

only if the following conditions are satisfied:

(i) The motion policy domains Di and D
′

i must be

obstacle-free in order to guarantee that the closed-

loop motion resulting from the execution of the

motion policy will remain collision-free.

(ii) For motion policies that start at non-stationary

trim conditions, the adjacent cell in the direction

opposite to the motion must be obstacle-free. Such

motion policies, if included in the motion policy

library, will become orphan motion policies as

other valid motion policies cannot prepare them.

(iii) For motion policies that end at non-stationary trim

conditions, the adjacent cell in the direction of

the motion must be obstacle-free. Such motion

policies, if included in the motion policy library,

will result in collisions as they cannot prepare valid

motion policies.

The percentage of the bounded position state space

covered by the start domains of the motion policies

in the motion policy library represents the coverage of

the motion policy library. The coverage percentage is

calculated by uniformly sampling the bounded position

state space and verifying its existence in the union of the

start domains of the motion policies in the motion policy

library. If the desired coverage is not achieved then the

grid spacing for the instantiation points is halved, and the

automatic instantiation procedure is repeated until either

the desired coverage or the maximum number of such

iterations is achieved. If 100% coverage is not achieved,

then it indicates that there are certain position states that

cannot be handled by the motion policies in the motion

policy library.

It is important to note that the motion policy domains

are verified in simulation and hence, under the action

of the motion policies in the motion policy library, the

robot’s state is verified to remain within these domains.

Therefore, the position states not covered by the union

of the domains of the motion policies in the motion

policy library are not reached under normal circum-

stances. However, they can be reached when the robot

is subjected to large disturbances. A backup emergency

controller is used to handle such cases. In this work, the

ballbot switches to a simple balancing mode when such

a situation is encountered. While in balancing mode, the

robot slows down and comes to rest, and it can poten-

tially enter the domain of one of the motion policies in

the motion policy library and can still get to the goal. An

experimental demonstration of this behavior is presented

in Sec. VI-D. Currently, our group is also exploring real-

time trajectory planning algorithms (Shomin and Hollis

2013) that will enable the ballbot to recover from such

Y
(m

)

X (m)
0 1 2 3

0

1

2

3

Fig. 10. A subset of motion policies from a motion policy library
L(Π,M), instantiated from the motion policy palette Π(Σ) with the
motion primitive set Σ(d) shown in Fig. 5. The lines represent position
space motions of the motion primitives, while the shaded regions show
2D projections of the 4D motion policy domains, including their outer
domains. The three obstacles are shown in black.

cases and enter nearby motion policy domains in the

motion policy library.

In this work, the grid spacing of the map M was set to

match the distance parameter d of the motion primitive

set Σ(d), which was chosen such that the desired cover-

age was achieved. The position space radii of the motion

policy domains play the primary role in determining the

coverage, and hence they are used to determine bounds

on the choice of d. The number and variety of motion

primitives in the motion primitive set Σ(d) also affects

the coverage, but is relatively insignificant. However, a

larger and more varied motion primitive set allows a

richer collection of graceful motions to be achieved.

The automatic instantiation procedure presented in this

section uniformly instantiates the motion policies on a

given map. This uniformly dense instantiation provides

“rich” motions for the robot at all points on the map.

However, this is not a necessity. One can also use

variable density instantiation procedures that sparsely

instantiates motion policies in free, open spaces and

densely instantiates motion policies in cluttered, narrow

spaces. However, good coverage of the map is essential

in order to successfully handle large disturbances.

B. Planning in Motion Policy Space

Given a map M and a motion policy palette Π(Σ), the
automatic instantiation procedure presented in Sec. V-A

generates a motion policy library L(Π,M). The grace-

fully prepares relationship between every pair of motion

14

International Journal of Robotics Research (IJRR), Special Issue: Motion Planning for Physical Robots
Volume 32, Issue 9 – 10, pp. 1005 – 1029, September 2013

Φ1

Φ2

Φ3

Φ4

Φ5

Φ6

Φ7

Φ8

Φ9

Φ10

Fig. 11. An example gracefully prepares graph.

policies (Φi,Φj) in the motion policy library L(Π,M) is
verified using the conditions presented in Sec. IV-C, and

a directed graph called the gracefully prepares graph

Ω(L) is generated, an example of which is shown in

Fig. 11. Each node in Ω(L) represents a valid instantiated
motion policy Φi ∈ L, and each directed edge from Φi to

Φj represents the gracefully prepares relationship, i.e.,
Φi �G Φj . The gracefully prepares graph is similar to

the prepares graph presented in (Conner et al. 2006),

but differs from the fact that the edges represent the

gracefully prepares relationship and not just the prepares

relationship as explained in Sec. IV-C. Unlike in the

prepares graph, the switching between motion policies

in the gracefully prepares graph is guaranteed to result

in overall graceful motion. Therefore, the gracefully pre-

pares graph Ω(L) contains all possible graceful motions

that the robot can achieve on the map M using motion

policies in the motion policy library L(Π,M).

If the gracefully prepares graph is strongly connected,

i.e., every motion policy node has a path to every other

motion policy node in the directed graph (Cormen et al.

2001), then its controllable subspace is given by the

union of the motion primitives of the motion policies

in the library. In general, given a gracefully prepares

graph, its largest controllable subspace is given by the

union of the motion primitives of the motion policies in

its largest strongly connected subgraph.

This work assumes that any navigation task can be

formulated as a motion between trim motion policies,

i.e., motion policies with trim motion primitives, and

hence any navigation task can be formulated as a graph

search problem on the gracefully prepares graph. This

assumption is valid since any navigation task can be

formulated as either a point-point motion or a surveil-

lance motion or a combination of the two. A point-point

motion can be formulated as a motion between trim

motion policies that have constant position trajectories

as trim primitives, while a surveillance motion can be

Algorithm 1: Single-Goal Optimal Motion Policy

Tree using Dijkstra’s Algorithm

input : Gracefully Prepares Graph Ω
Goal Motion Policy Node G

output: Optimal Motion Policy Tree Γ
begin1

Γ← ∅2

foreach i ∈ Node(Ω) do3

Cost2Goal(i) ←∞4

Next2Goal(i) ← ∅5

Γ← Γ ∪
(

i, Cost2Goal(i), Next2Goal(i)
)

6

end7

Cost2Goal(G) ← 08

Q← Γ9

while Q 6= ∅ do10

j ← MinCostNode(Q)11

if Cost2Goal(j) = ∞ then12

break13

end14

Q← Q− {j}15

foreach k ∈ Parent(j) do16

c ← Cost2Goal(j) + EdgeCost(k, j)17

if c < Cost2Goal(k) then18

Cost2Goal(k) ← c19

Next2Goal(k) ← j20

end21

end22

end23

end24

formulated as a motion between trim motion policies that

have constant velocity trajectories as trim primitives.

Traditionally, graph search algorithms have been used

to plan in the space of discrete cells or paths. But, in

this work, graph search algorithms are used to plan in

the space of gracefully composable motion policies, i.e.,
controllers. The graph search algorithms now provide a

motion plan that consists of a sequence of gracefully

composable motion policies that achieve the overall

navigation task. In this work, the Dijsktra’s algorithm

(Dijkstra 1959) shown in Algorithm 1 is used to solve

the single-goal optimal navigation problem. The candi-

dates for the optimality criterion include fastest time

and shortest path. Unlike other heuristic-based graph

search algorithms like A∗ (Hart et al. 1968), Dijsktra’s

algorithm uses a dynamic programming approach and

optimizes over the actual cost funtion without the use of

any heuristics.

Given a goal position state, the Euclidean distance

metric is used to find the closest trim motion policy

15

International Journal of Robotics Research (IJRR), Special Issue: Motion Planning for Physical Robots
Volume 32, Issue 9 – 10, pp. 1005 – 1029, September 2013

whose goal domain contains it, and its corresponding

node in the gracefully prepares graph Ω forms the

goal motion policy node G. Algorithm 1 generates a

single-goal optimal motion policy tree Γ(Ω, G), which
contains optimal paths from all motion policy nodes

in the gracefully prepares graph Ω to the goal motion

policy node G. Each motion policy node i in the optimal

motion policy tree Γ(Ω, G) contains a motion policy Φi,

its cost to reach the goal motion policy node given by

Cost2Goal(i), and a pointer to the next optimal motion

policy node given by Next2Goal(i). The algorithm begins

with resetting the Cost2Goal values and the Next2Goal

pointers for all the motion policy nodes in the optimal

policy tree Γ except for the goal motion policy node G
whose Cost2Goal value is set to zero (lines 3 − 7). A
list of unoptimized nodes Q is created and iterated over

(lines 10−23). At each iteration, the motion policy node

with the minimum Cost2Goal given byMinCostNode(Q)

is removed from Q, and the Cost2Goal values and the

Next2Goal pointers of its parents are updated (lines

16−22). The function EdgeCost(k, j) returns the cost of
switching from motion policy Φk to Φj . This iteration

continues until all unoptimized nodes are optimized or

all remaining motion policy nodes in Q do not have a

path to the goal motion policy nodeG, which is indicated

by infinite Cost2Goal (lines 12− 14).

The optimal motion policy tree Γ(Ω, G) represents all
optimal graceful motions that the robot can achieve in

order to reach the goal motion policy node G. However,

the optimality is limited by motion policies in the motion

policy library. Any motion policy node that has a path to

the goal motion policy node will reach the goal motion

policy node by switching between an optimal sequence

of motion policies that guarantee overall graceful motion

by construction. A subtree of a single-goal time-optimal

motion policy tree obtained using Algorithm 1 is shown

in Fig. 12. The optimal motion policy sequences with

XY projections of their 4D domains from a number of

different initial positions on a map with static obstacles

are shown in Fig. 12. Since the optimal motion policy

tree contains the optimal sequence of gracefully com-

posable motion policies from all trim conditions to the

goal motion policy node, replanning is unnecessary when

the robot’s start position changes. However, the optimal

motion policy tree has to be regenerated when the goal

motion policy node changes.

This section presented a motion planner that plans in

the space of gracefully composable motion policies (con-

trollers) and explicitly accounts for both the dynamics

of the system and the domains of the controllers. Each

motion policy knows the exact motion it achieves in

the environment and also knows that it is collision-free.

Therefore, in this framework, the motion planner has

knowledge of the system dynamics, and capabilities and

limitations of the underlying controllers used to achieve

the motion plans. The controllers, on the other hand,

have knowledge of the environment constraints and also

the motions that they produce, thereby, forming a truly

integrated motion planning and control framework.

C. Hybrid Control

The optimal path to the goal motion policy node from

any start motion policy node in the optimal motion policy

tree is obtained by following its Next2Goal pointer

until the goal motion policy node is reached. A hybrid

controller is used as a master/supervisory controller to

ensure successful execution of the optimal sequence of

motion policies. The hybrid controller starts executing a

motion policy Φi and resets its timer only if the robot’s

position state is inside its start domain Si. It continues

executing the motion policy Φi only if the robot’s

position state lies inside its domain Di
′(t) ∀t ∈ [0, tf],

and the motion policy execution is stopped when its

timer runs out and the robot’s position state reaches its

goal domain Gi. The switch to the next motion policy

Φj happens naturally as the goal domain of Φi lies inside

the start domain of Φj , i.e., Gi ⊂ Sj by construction of

the gracefully prepares graph.

The feedback control law φi(t) of a motion policy

Φi is capable of handling small disturbances and uncer-

tainties. But when subjected to large disturbances, the

Y
(m

)

X (m)

GOAL

0 1 2 3

0

1

2

3

Fig. 12. A subtree of a single-goal time-optimal motion policy tree.
The lines represent position space motions of the motion primitives,
while the shaded regions show 2D projections of the 4D motion policy
domains, including their outer domains.

16

International Journal of Robotics Research (IJRR), Special Issue: Motion Planning for Physical Robots
Volume 32, Issue 9 – 10, pp. 1005 – 1029, September 2013

robot’s position state can exit the domain D′(t), for

some t ∈ [0, tf]. Since the hybrid controller checks

for the validity of the motion policy ∀t ∈ [0, tf], it

detects the domain exit, stops the execution of the current

motion policy, finds another motion policy Φk whose

start domain Sk contains this exiting position state, and

switches to the new motion policy Φk. If there exists a

path from the new motion policy Φk to the goal, then

the optimal motion policy tree Γ(Ω, G) already contains

the sequence of gracefully composable motion policies

that lead the motion policy Φk to the goal motion

policy node G. If the automatic instantiation procedure

guaranteed 100% coverage, then there will always exist a

motion policy Φk in the motion policy library whose start

domain will capture the robot’s exiting position state. But

if 100% coverage was not guaranteed and if there is no

motion policy in the motion policy library whose start

domain captures the robot’s exiting position state, then

the hybrid controller executes the backup emergency

controller. In this work, the hybrid controller switches

to a simple balancing mode when such a scenario is

encountered. It is to be noted that the switching from

the motion policy Φi to the new motion policy Φk or

the backup emergency controller is discrete and is not

graceful as the disturbance added to the robot that caused

the domain exit is discontinuous.

D. Dynamic Replanning

While navigating human environments, it is inevitable

that new static obstacles or dynamic obstacles are en-

countered. In such cases, a dynamic replanning proce-

dure is necessary that will avoid motion policies that

result in collision with the new obstacles.

Figure 13(a) shows an example optimal motion policy

tree with a goal motion policy Φ1. The optimal motion

policy tree accounts for the known static obstacles in

the environment, and hence each motion policy Φi

represents a collision-free motion policy in the known

environment. However, the introduction of new static and

dynamic obstacles can invalidate some of these motion

policies, for example, the motion policy Φ3 in Fig. 13(b)
is invalidated by a new obstacle. In such cases, the

optimal motion policy tree must be updated to avoid

these invalid motion policies as shown in Fig. 13(c).
The simplest approach to account for the new obsta-

cles is to regenerate the entire optimal motion policy

tree while ignoring the invalid motion policy nodes as

shown in Algorithm 2. Unlike Algorithm 1, Algorithm 2

optimizes only the valid motion policy nodes given by

the Valid() function (lines 17 − 23). In this approach,

every time there is a change in the validity of motion

Φ1

Φ2

Φ3

Φ4

Φ5

Φ6

Φ7

Φ8

Φ9

Φ10 Φ11

Φ12

(a)

Φ1

Φ2

Φ3

Φ4

Φ5

Φ6

Φ7

Φ8

Φ9

Φ10 Φ11

Φ12

(b)

Φ1

Φ2

Φ3

Φ4

Φ5

Φ6

Φ7

Φ8

Φ9

Φ10 Φ11

Φ12

(c)

Fig. 13. (a) Single-goal optimal motion policy tree with the goal
motion policy Φ1; (b) The motion policy Φ3 is invalidated by a new
obstacle, and hence the motion policies Φ7,Φ8,Φ10 and Φ11 need to
be updated; and (c) Updated optimal motion policy tree.

17

International Journal of Robotics Research (IJRR), Special Issue: Motion Planning for Physical Robots
Volume 32, Issue 9 – 10, pp. 1005 – 1029, September 2013

Algorithm 2: Dijkstra’s Algorithm with Invalid

Nodes

input : Gracefully Prepares Graph Ω
Goal Motion Policy Node G

output: Optimal Motion Policy Tree Γ
begin1

Γ← ∅2

foreach i ∈ Node(Ω) do3

Cost2Goal(i) ←∞4

Next2Goal(i) ← ∅5

Γ← Γ ∪
(

i, Cost2Goal(i), Next2Goal(i)
)

6

end7

Cost2Goal(G) ← 08

Q← Γ9

while Q 6= ∅ do10

j ← MinCostNode(Q)11

if Cost2Goal(j) = ∞ then12

break13

end14

Q← Q− {j}15

foreach k ∈ Parent(j) do16

if Valid(k) then17

c ← Cost2Goal(j) + EdgeCost(k, j)18

if c < Cost2Goal(k) then19

Cost2Goal(k) ← c20

Next2Goal(k) ← j21

end22

end23

end24

end25

end26

policy nodes, the optimal motion policy tree has to

be regenerated. For example, the motion policy nodes

Φ7,Φ8,Φ10,Φ11 shown in Fig. 13(b) are the only nodes

that had to be updated, whereas the other nodes did not

require any updates. It is computationally inefficient to

regenerate the entire motion policy tree when only a

subset of the motion policy nodes need to be updated.

Therefore, this section presents an efficient dynamic

replanning algorithm that updates only the motion policy

nodes that need to be updated. This algorithm consists

of the following three steps: (i) finding invalid motion

policies, (ii) finding motion policy nodes to be updated,

and (iii) updating the motion policy nodes.

1) Finding Invalid Motion Policies: The motion plan-

ner uses occupancy grids (Elfes 1989) to find the invalid

cells in a finely discretized 2D map of the environment.

The mapping from an occupancy cell to a motion policy

in the motion policy library is obtained during the au-

Algorithm 3: Find Nodes to be Updated

input : Base Optimal Motion Policy Tree Γ0

Goal Motion Policy Node G
Set of Invalid Nodes I

output: Set of Nodes to be Updated U
begin1

U ← ∅2

foreach i ∈ I do3

U ← U ∪ i4

end5

Q ← G6

while Q 6= ∅ do7

i ← Pop(Q)8

foreach j ∈ TreeParent(Γ0, i) do9

if i ∈ U then10

U ← U ∪ j11

end12

Q ← Q ∪ j13

end14

end15

end16

tomatic motion policy instantiation procedure described

in Sec. V-A. Each occupancy cell has a list of motion

policies whose domains cover it, and this list is updated

for every valid motion policy instantiation. Therefore

given a list of occupied cells, a simple look-up operation

provides the list of invalid motion policy nodes I .

2) Finding Motion Policy Nodes to be Updated:

Figure 13(b) shows that the motion policy nodes that

need to be updated belong to the subtree with the invalid

motion policy node as its head. Any valid motion policy

that reaches the goal motion policy via an invalid motion

policy must be updated. This subtree of motion policy

nodes can be found by traversing down the optimal

motion policy tree of the base case, i.e., the map with

all known static obstacles and no new obstacles. The

algorithm used to find the motion policy nodes to be up-

dated is shown in Algorithm 3. The base optimal motion

policy tree Γ0 is the best possible motion policy tree that

can be generated, and is generated using Algorithm 1.

Each motion policy node i has a list of motion policy

nodes that point to it (parents) in the base optimal motion

policy tree Γ0 given by TreeParent(Γ0, i). All invalid

motion policy nodes are added to the list of nodes to

be updated U (lines 3 − 5), and the search for nodes

to be updated begins with the goal motion policy node

G and traverses down the entire base optimal motion

policy tree Γ0 in a breadth-first search manner (lines

6 − 15). If a motion policy node i is marked to be

18

International Journal of Robotics Research (IJRR), Special Issue: Motion Planning for Physical Robots
Volume 32, Issue 9 – 10, pp. 1005 – 1029, September 2013

Algorithm 4: Update Optimal Motion Policy Tree

input : Base Optimal Motion Policy Tree Γ0

Goal Motion Policy Node G
Set of Nodes to be Updated U

output: Updated Optimal Motion Policy Tree Γ
begin1

Γ← Γ02

foreach i ∈ U do3

Cost2Goal(i) ←∞4

Next2Goal(i) ← ∅5

end6

foreach i ∈ U do7

if Valid(i) then8

foreach j ∈ Child(i) do9

if Valid(j) then10

c ← Cost2Goal(j) +11

EdgeCost(i, j)
if c < Cost2Goal(i) then12

Cost2Goal(i) ← c13

Next2Goal(i) ← j14

end15

end16

end17

else18

U ← U − {i}19

end20

end21

Q← U22

while Q 6= ∅ do23

j ← MinCostNode(Q)24

if Cost2Goal(j) = ∞ then25

break26

end27

Q← Q− {j}28

foreach k ∈ Parent(j) do29

if Valid(k) then30

c ← Cost2Goal(j) + EdgeCost(k, j)31

if c < Cost2Goal(k) then32

Cost2Goal(k) ← c33

Next2Goal(k) ← j34

end35

end36

end37

end38

end39

updated, then all its parents in the base optimal tree Γ0

given by TreeParent(Γ0, i) are added to the list of nodes

to be updated U (lines 10− 12).

3) Update the Motion Policy Nodes: The procedure

to update the optimal motion policy tree Γ is presented in

Algorithm 4. Every time the optimal motion policy tree

Γ is to be updated, it is reset to the base optimal motion

policy tree Γ0, and the Cost2Goal values and Next2Goal

pointers for all motion policy nodes in the list of nodes

to be updated U are reset (lines 3 − 6). For each valid

motion policy node i in the list U given by Valid(i), its
Next2Goal pointer is initialized to its valid child motion

policy node with the minimum Cost2Goal (lines 9−17).
The children of each motion policy node are obtained

from the gracefully prepares graph Ω. The invalid motion

policy nodes are removed from the list U , while the

valid motion policy nodes with the initialized Cost2Goal

values and Next2Goal pointers are added to the list of

unoptimized nodes Q. The procedure to optimize the

Cost2Goal values for just these motion policy nodes

(lines 25 − 40) is same as that in Algorithm 1 (lines

10− 23) and in Algorithm 2 (lines 10− 25).
The dynamic replanning algorithm presented above is

used only when the validity of a motion policy in the

motion policy library changes. When such a change is

detected, the current set of invalid motion policy nodes I
is determined, and Algorithm 3 is used to find the motion

policy nodes in the base optimal motion policy tree Γ0

that need to be updated. The optimal motion policy tree

Γ is then reset to Γ0 and updated using Algorithm 4.

VI. EXPERIMENTAL RESULTS WITH THE BALLBOT

This section presents experimental results of the ball-

bot successfully achieving different navigation tasks in

a graceful manner using the integrated motion planning

and control framework presented in Sec. V.

A. Experimental Setup

The ballbot localizes itself on a 2D map of the

environment using a particle filter based localization

algorithm presented in (Biswas et al. 2011). The en-

coders on the ball motors of the inverse mouse-ball drive

provide the odometry data for the prediction step, while

a Hokuyo URG-04LX laser range finder provides the

laser scan readings for the correction step.

The laser range finder is also used to detect obstacles

using an occupancy grid map (Elfes 1989) with a grid

spacing of 0.1 m. The laser range finder is mounted on

the front of the robot with only a 180◦ field of view,

and hence obstacles behind the laser cannot be detected.

However, the ballbot can remember a previously en-

countered obstacle using its occupancy grid map. The

occupancy grid map is primarily used to detect new

static and dynamic obstacles, whereas permanent static

obstacles are included in the map.

19

International Journal of Robotics Research (IJRR), Special Issue: Motion Planning for Physical Robots
Volume 32, Issue 9 – 10, pp. 1005 – 1029, September 2013

B. Motion Policy Library

In order to illustrate the integrated motion planning

and control framework’s capability to handle different

motion policy palettes, this section presents experimental

results that used two motion policy palettes, one with

39 unique motion policies and another with 43 unique

motion policies. They used different motion primitive

sets with the same distance parameter d = 0.5 m like the

ones shown in Fig. 5. The palette with 43 motion policies

had more non-stationary trim conditions than the palette

with 39 motion policies. The problem of determining

the minimal set of motion policies required to achieve

a navigation task is an open research question. It is not

addressed in this paper and will be explored in the future.

For all the results presented in this section, the motion

policies were automatically instantiated in a 3.5 m ×
3.5 m obstacle-free area of a map of our lab as de-

scribed in Sec. V-A. The motion policy palette with 39

motion policies produces a motion policy library of 4521

instantiated motion policies, while the motion policy

palette with 43 motion policies produces a motion policy

library of 4569 instantiated motion policies. For both the

motion policy palettes, the total time taken to generate

the motion policy library and the gracefully prepares

graph is approximately 2.5 s on the dual core computer

on-board the robot. Similarly, the same computer takes

about 0.05 s to generate the optimal motion policy tree

for both the motion policy palettes. This allows the

optimal motion policy tree to be regenerated and updated

in real-time. All the results presented in this section use

fastest time as the optimality criterion.

C. Point-Point Motion

The point-point navigation task can be formulated as

a motion between trim motion policies with constant

position reference trajectories as motion primitives. The

goal motion policy in the motion policy library is given

by the trim motion policy whose goal position state is

the closest to the desired goal position by Euclidean

distance metric. Figure 14 shows the ballbot successfully

reaching a single goal position state of (2 m, 2 m,

0 m/s, 0 m/s) from four different starting configurations

in the presence of two static obstacles. The experimental

position space motions shown in Fig. 14 were obtained

from the localization algorithm (Biswas et al. 2011).

This navigation task used the motion policy palette

with 39 motion policies to generate the motion policy

library. A single-goal time-optimal motion policy tree

was generated online using Algorithm 2 that takes into

account the known static obstacles in the map. Each of

the motions shown in Fig. 14 were obtained by tracking

3

21

4

Y
(m

)

X (m)

GOAL

Reference
Experimental

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

2

2.5

Fig. 14. Point-Point motion with two obstacles, shown in black.

Start Goal

Fig. 15. Composite frames from a video of the ballbot achieving the
goal from start position no. 1.

motions from the single-goal time-optimal motion policy

tree, and were not regenerated for each run.

Figure 15 shows the composite frames from a video

of the ballbot achieving the goal from the first starting

position, and the resulting body angle trajectories are

Y
X

B
o
d
y
A
n
g
le

(◦
)

Time (s)
0 2 4 6 8 10 12 14

−4

−2

0

2

4

Fig. 16. Point-Point motion: Body angle trajectories to achieve the
goal from start position no. 1.

20

International Journal of Robotics Research (IJRR), Special Issue: Motion Planning for Physical Robots
Volume 32, Issue 9 – 10, pp. 1005 – 1029, September 2013

shown in Fig. 16. The video of the ballbot achieving all

four motions can be found in Extension 2.

D. Disturbance Handling

Figure 17 presents the experimental results that illus-

trate the capability of the integrated motion planning

and control framework to handle large disturbances.

While the ballbot was executing a point-point motion, it

was physically held and stopped from moving towards

the goal. Then, the ballbot was physically moved to a

different point on the map and let go.

When the ballbot was physically stopped from moving

towards the goal, its position state exited the domain

of the motion policy it was executing, and the hybrid

control architecture detected this domain exit. It then

Y
(m

)

X (m)

GOAL

Robot Pushed

Domain
Exit

Reference
Experimental

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

2

2.5

Fig. 17. Disturbance Handling

Start

Goal

Set Free

Domain
Exit Pushed

Fig. 18. Composite frames from a video of the ballbot reaching the
goal while handling a disturbance.

searched the motion policy library to find motion policies

whose start domain contained this exiting position state.

Since a continued disturbance was applied to the robot,

its position state continued to exit the domains that were

found until the ballbot was set free to move on its own.

After it was set free, the ballbot successfully reached

the goal as shown in Fig. 17. Here again, the single-goal

time-optimal motion policy tree was not regenerated. The

composite frames from a video of the ballbot achieving

this motion are shown in Fig. 18, and the video can be

found in Extension 2.

E. Surveillance

The navigation task of surveillance can be formulated

as a motion between trim motion policies that have

constant velocity reference trajectories as motion prim-

itives. The task is specified as a sequence of moving

goal position states that are repeated in a cyclic fashion.

Unlike point-point motion, the surveillance motion has

multiple cyclic goals. A new goal motion policy is found

every time the current goal motion policy is reached,

and hence the time-optimal motion policy tree has to

be regenerated. The motion planner takes only 0.05 s to

regenerate the motion policy library used here, and all

of its motion policies have time durations greater than or

equal to 1 s. Hence, the optimal motion policy tree can be

regenerated in real-time while executing the last motion

policy to the current goal. This process repeats until the

user quits the surveillance task. Figure 19 shows the

ballbot successfully performing a surveillance task with

four goal configurations using the motion policy palette

with 39 motion policies. In this run, the surveillance

Y
(m

)

X (m)

Reference
Experimental

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

2

2.5

Fig. 19. Surveillance motion with four goal configurations represented
by arrows, and one obstacle, shown in black.

21

International Journal of Robotics Research (IJRR), Special Issue: Motion Planning for Physical Robots
Volume 32, Issue 9 – 10, pp. 1005 – 1029, September 2013

B
o
d
y
A
n
g
le

(◦
)

Time (s)

X
Y

0 10 20 30 40 50 60 70 80 90
−4

−2

0

2

4

Fig. 20. Body angle trajectories for the surveillance motion with four
goal configurations.

Goal1

Goal2

Goal3Goal4

Fig. 21. Composite frames from a video of the ballbot achieving the
surveillance motion with four goal configurations.

task was quit after five successful loops. The body angle

trajectories for one complete surveillance loop are shown

in Fig. 20. The composite frames from a video of the

ballbot achieving this task is shown in Fig. 21, and the

video can be found in Extension 2.

Two successful loops of another surveillance task

with ten goal configurations are shown in Fig. 22. This

surveillance task was achieved using the motion policy

palette with 43 motion policies, and the optimal motion

policy tree was successfully regenerated real-time on the

robot for every single goal configuration. The resulting

body angle trajectories for one complete surveillance

cycle are shown in Fig. 23.

F. Dynamic Replanning

Figure 24 shows the ballbot using the dynamic re-

planning algorithm presented in Sec. V-D to avoid new

static and dynamic obstacles, and successfully reach the

goal. The composite frames from a video of the ballbot

 Experimental

Reference

Y
(m

)

X (m)

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

2

2.5

Fig. 22. Surveillance motion with ten goal configurations represented
by arrows, and one obstacle, shown in black.

Y
X

B
o
d
y
A
n
g
le

(◦
)

Time (s)
0 20 40 60 80 100 120 140 160

−2

−1

0

1

2

Fig. 23. Body angle trajectories for the surveillance motion with ten
goal configurations.

performing this motion is shown in Fig. 25, and the video

can be found in Extension 2.

The base optimal reference motion to the goal with-

out any new static or dynamic obstacles is shown in

Fig. 26(a). The optimal reference motion to the goal

with the new static obstacle and the dynamic obstacle

in its first position is shown in Fig. 26(b). The optimal

reference motion to the goal with the dynamic obstacle

moving to its second location is shown in Fig. 26(c).
The final optimal reference motion to the goal along

with the resulting ballbot motion are shown in Fig. 24.

It is important to note that the optimal motions achieved

using this approach are limited by the motion policies in

the motion policy library. For example, one can see that

the optimal reference motion shown in Fig. 26(b) is not
optimal in a true sense but is optimal w.r.t. the motion

policies available in the motion policy library.

The motion policy palette with 43 motion policies

22

International Journal of Robotics Research (IJRR), Special Issue: Motion Planning for Physical Robots
Volume 32, Issue 9 – 10, pp. 1005 – 1029, September 2013

Experimental
Reference

Dynamic
Obstacle3

Static
Obstacle

Goal

Start

Y
(m

)

X (m)

Dynamic
Obstacle2

Dynamic
Obstacle1

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

2

2.5

Fig. 24. Dynamic replanning to reach the goal

Start Goal

Static
Obstacle

Dynamic
Obstacle

Fig. 25. Composite frames from a video of the ballbot dynamically
replanning to avoid static and dynamic obstacles.

was used for this run. The dual-core computer on-board

the ballbot takes 0.01 s to 0.05 s to update the optimal

motion policy tree depending on the number of motion

policy nodes to be updated. Each motion policy is of

time duration greater than or equal to 1 s, and hence the

optimal motion policy tree can be updated fast enough

to account for the dynamic obstacles, which are detected

by the laser range finder at 10 Hz, i.e., every 0.1 s.

VII. CONCLUSIONS

This paper presented an integrated motion planning

and control framework that enables balancing mobile

robots like the ballbot to gracefully navigate human en-

vironments. A notion of gracefully prepares relationship

that ensured graceful switching between motion policies

was introduced. A palette of gracefully composable

motion policies were designed offline, and an online au-

tomatic instantiation procedure that deploys these motion

policies to fill a map of the environment was presented.

Goal

Start

Y
(m

)

X (m)

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

2

2.5

(a)

Dynamic
Obstacle1

Static
Obstacle

Goal

Start

Y
(m

)

X (m)

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

2

2.5

(b)

Dynamic
Obstacle2

Static
Obstacle

Goal

Start

Y
(m

)

X (m)

Dynamic
Obstacle1

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

2

2.5

(c)

Fig. 26. (a) The base optimal reference motion to the goal; (b) The
optimal reference motion with the static obstacle, and the dynamic
obstacle at its first location; (c) The optimal reference motion when
the dynamic obstacle has moved to its second location.

23

International Journal of Robotics Research (IJRR), Special Issue: Motion Planning for Physical Robots
Volume 32, Issue 9 – 10, pp. 1005 – 1029, September 2013

A gracefully prepares graph that represented all possible

graceful motions that the robot can achieve in a map

was generated online, and the navigation tasks were

formulated as graph-search problems.

Dijkstra’s algorithm was used to generate the single-

goal optimal motion policy tree, and the optimality was

limited to the motion policies available in the motion

policy library. A variety of different point-point and

surveillance navigation tasks were successfully tested

on the ballbot using the integrated motion planning

and control framework. Experiments that demonstrate

the capability of the framework to successfully handle

disturbances were also presented. Finally, a dynamic

replanning algorithm that replans the single-optimal mo-

tion policy tree in the presence of dynamic obstacles was

presented, and successfully tested on the ballbot.

VIII. FUTURE WORK

One of the improvements that can be done to the work

presented in this paper is in the design and verification

of the motion policy domains. The current advancements

in algebraic verification of controllers using sums-of-

squares (SOS) tools (Tedrake et al. 2010; Tobenkin

et al. 2011) can be used to design invariant domains

for the motion policies. It is difficult to achieve the

desired coverage in environments with narrow paths as

the motion policy domain definitions presented in this

paper are fixed. But the invariant motion policy domain

definitions will allow one to explore ways to scale-down

these motion policy domains during instantiation so that

the obstacles can be avoided and the desired coverage

can also be guaranteed.

The work presented in this paper used Dijkstra’s

algorithm for graph search, which may not be fast

enough on bigger graphs that cover larger areas. In order

to handle large maps, two different approaches can be

explored. One approach involves the use of heuristic

based graph search algorithms like D∗ (Stentz 1995) and

D∗ Lite (Koenig and Likachev 2002), while the other

approach involves dividing the large map into smaller

regions and piecing together locally optimal motions

to achieve the global goal. The design of admissible

heuristics in the space of motion policies is a chal-

lenging problem and must be explored. The automatic

instantiation procedure presented in this paper uniformly

distributed motion policies on a map. However, variable

density instantiation procedures that sparsely fill open

spaces and densely populate narrow spaces can also

be explored. The problem of determining the minimal

set of motion policies that can optimally achieve a

navigation task is an open research question, and it needs

to be addressed. Moreover, metrics that can compare and

evaluate two motion policy palettes for a navigation task

must also be explored.

IX. ACKNOWLEDGEMENTS

This work was supported in part by NSF grants IIS-

0308067 and IIS-0535183. We thank Joydeep Biswas for

providing the localization algorithm implementation, and

Byungjun Kim and Michael Shomin for their vital help

in running the ballbot experiments. We also thank the

reviewers for their invaluable comments and suggestions

that helped us significantly improve the paper.

REFERENCES

A. A. Agrachev and Y. L. Sachkov. An intrinsic approach

to the control of rolling bodies. In Proc. IEEE Conf.

on Decision and Control, pages 431–435, 1999.

F. Amirabdollahian, R. Loureiro, and W. Harwin. Min-

imum jerk trajectory control for rehabilitation and

haptic applications. In Proc. IEEE Int’l Conf. on

Robotics and Automation, pages 3380–3385, 2002.

Anybots. http://anybots.com, 2010.

C. Belta, V. Iser, and G. J. Pappas. Discrete abstractions

for robot planning and control in polygonal envi-

ronments. IEEE Trans. on Robotics, 21(5):864–874,

2005.

A. Bicchi and R. Sorrentino. Dextrous manipulation

through rolling. In Proc. IEEE Int’l Conf. on Robotics

and Automation, pages 452–457, 1995.

J. Biswas, B. Coltin, and M. Veloso. Corrective gradient

refinement for mobile robot localization. In Proc.

IEEE Int’l Conf. on Intelligent Robots and Systems,

pages 73–78, 2011.

R. W. Brockett and L. Dai. Nonholonomic kinematics

and the role of elliptic functions in constructive con-

trollability. Nonholonomic Motion Planning, pages 1–

20, 1993.

R. R. Burridge, A. A. Rizzi, and D. E. Koditschek. Se-

quential composition of dynamically dexterous robot

behaviors. The International Journal of Robotics

Research, 18(6):534–555, 1999.

D. C. Conner, Howie Choset, and A. A. Rizzi. Integrated

planning and control for convex-bodied nonholonomic

systems using local feedback. In Proc. Robotics:

Science and Systems II, pages 57–64, 2006.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and

C. Stein. Introduction to Algorithms. MIT Press, 2001.

P. Deegan, B. Thibodeau, and R. Grupen. Designing a

self-stabilizing robot for dynamic mobile manipula-

tion. Robotics: Science and Systems - Workshop on

Manipulation for Human Environments, 2006.

24

International Journal of Robotics Research (IJRR), Special Issue: Motion Planning for Physical Robots
Volume 32, Issue 9 – 10, pp. 1005 – 1029, September 2013

P. Deegan, R. Grupen, A. Hanson, E. Horrell, S. Ou,

E. Riseman, S. Sen, B.Thibodeau, A. Williams, and

D. Xie. Mobile manipulators for assisted living in

residential settings. Autonomous Robots, 2007.

E. W. Dijkstra. A note on two problems in connexion

with graphs. Numerische Mathematik, 1(1):269–271,

1959.

A. Elfes. Using occupancy grids for mobile robot

perception and navigation. Computer, 22(6):46–57,

1989.

T. Flash and N. Hogan. The coordination of arm

movements: an experimentally confirmed mathemat-

ical model. Journal of Neuroscience, 5:1688–1703,

1985.

E. Frazzoli, M. A. Dahleh, and E. Feron. Robust hybrid

control for autonomous vehicle motion planning. In

Proc. IEEE Conf. on Decision and Control, pages

821–826, 2000.

E. Frazzoli, M. A. Dahleh, and E. Feron. Real-time

motion planning for agile autonomous vehicles. AIAA

J. Guid., Control, Dynam., 25(1):116–129, 2002.

E. Frazzoli, M. A. Dahleh, and E. Feron. Maneuver-

based motion planning for nonlinear systems with

symmetries. IEEE Trans. on Robotics, 21(6):1077–

1091, 2005.

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis

for the heuristic determination of minimum cost paths.

IEEE Trans. on Systems Science and Cybernetics, 4

(2):100–107, 1968.

K. Hauser, T. Bretl, K. Harada, and J. C. Latombe. Using

motion primitives in probabilistic sample-based plan-

ning for humanoid robots. Algorithmic Foundations of

Robotics VII, Springer Tracts in Advanced Robotics,

47:507–522, 2008.

N. Hogan. An organizing principle for a class of

voluntary movements. Journal of Neuroscience, 4:

2745–2754, 1984.

R. Hollis. Ballbots. Scientific American, pages 72–78,

Oct 2006.

D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock. Ran-

domized kinodynamic motion planning with moving

obstacles. International Journal of Robotics Research,

21(3):233–255, 2001.

iBOT. http://www.ibotnow.com, 2003.

G. Kantor and A. A. Rizzi. Feedback control of under-

actuated systems via sequential composition: Visually

guided control of a unicycle. In 11th Int’l Symp. of

Robotics Research, Oct. 2003.

E. Klavins and D. E. Koditschek. A formalism for

the composition of concurrent robot behaviors. In

Proc. IEEE Int’l. Conf. on Robotics and Automation,

volume 4, pages 3395–3402, 2000.

R. A. Knepper and M. T. Mason. Empirical sampling

of path sets for local area motion planning. In Int’l

Symp. on Experimental Robotics, 2008.

R. A. Knepper and M. T. Mason. Path diversity is only

part of the problem. In Proc. IEEE Int’l Conf. on

Robotics and Automation, pages 3260–3265, 2009.

S. Koenig and M. Likachev. D* lite. In Proc. 18th

National Conf. on Artificial Intelligence, pages 476–

483, 2002.

M. Kumagai and T. Ochiai. Development of a robot

balancing on a ball. Intl. Conf. on Control, Automation

and Systems, 2008.

M. Kumagai and T. Ochiai. Development of a robot

balancing on a ball - application of passive motion to

transport. In Proc. IEEE Int’l. Conf. on Robotics and

Automation, pages 4106–4111, 2009.

K. J. Kyriakopoulos and G. N. Saridis. Minimum jerk

path generation. In Proc. IEEE Int’l Conf. on Robotics

and Automation, pages 364–369, 1988.

T. Lauwers, G. Kantor, and R. Hollis. One is enough! In

Proc. Int’l. Symp. for Robotics Research, Oct. 2005.

T. B. Lauwers, G. A. Kantor, and R. L. Hollis. A

dynamically stable single-wheeled mobile robot with

inverse mouse-ball drive. In Proc. Int’l. Conf. on

Robotics and Automation, pages 2884–2889, 2006.

S. M. LaValle and J. Kuffner. Randomized kinodynamic

planning. International Journal of Robotics Research,

20(5):378–400, 2001.

K. Levenberg. A method for the solution of certain non-

linear problems in least squares. The Quarterly of

Applied Mathematics, 2:164–168, 1944.

Z. Li and J. Canny. Motion of two rigid bodies with

rolling constraint. IEEE Trans. on Robotics and

Automation, 6(1):62–72, 1990.

A. Marigo and A. Bicchi. Rolling bodies with regular

surface: Controllability theory and applications. IEEE

Trans. on Automatic Control, 45(9):1586–1599, 2000.

U. Nagarajan. Dynamic constraint-based optimal shape

trajectory planner for shape-accelerated underactuated

balancing systems. In Proc. Robotics: Science and

Systems, 2010.

U. Nagarajan and R. Hollis. Shape space planner

for shape-accelerated balancing mobile robots. Int’l

Journal of Robotics Research, 2013. (Under Review).

U. Nagarajan, G. Kantor, and R. Hollis. Trajectory

planning and control of an underactuated dynamically

stable single spherical wheeled mobile robot. In IEEE

Int’l. Conf. on Robotics and Automation, pages 3743–

3748, 2009a.

U. Nagarajan, G. Kantor, and R. Hollis. Human-robot

25

International Journal of Robotics Research (IJRR), Special Issue: Motion Planning for Physical Robots
Volume 32, Issue 9 – 10, pp. 1005 – 1029, September 2013

physical interaction with dynamically stable mobile

robots. 4th ACM/IEEE Int’l. Conf. on Human-Robot

Interaction, 2009b. (Short paper and video).

U. Nagarajan, A. Mampetta, G. Kantor, and R. Hollis.

State transition, balancing, station keeping, and yaw

control for a dynamically stable single spherical wheel

mobile robot. In IEEE Int’l. Conf. on Robotics and

Automation, pages 998–1003, 2009c.

U. Nagarajan, G. Kantor, and R. Hollis. Hybrid control

for navigation of shape-accelerated underactuated bal-

ancing systems. In Proc. IEEE Conf. on Decision and

Control, pages 3566–3571, 2010.

U. Nagarajan, G. Kantor, and R. Hollis. Integrated

planning and control for graceful navigation of shape-

accelerated underactuated balancing mobile robots. In

Proc. IEEE Int’l Conf. on Robotics and Automation,

pages 136–141, 2012a.

U. Nagarajan, B. Kim, and R. Hollis. Planning in

high-dimensional shape space for a single-wheeled

balancing mobile robot with arms. In IEEE Int’l Conf.

on Robotics and Automation, pages 130–135, 2012b.

J.A. Nelder and R. Mead. A simplex method for function

minimization. The Computer Journal, 7:308–313,

1964.

H. G. Nguyen, J. Morrell, K. Mullens, A. Burmeister,

S. Miles, N. Farrington, K. Thomas, and D. Gage.

Segway robotic mobility platform. In SPIE Proc.

5609: Mobile Robots XVII, Philadelphia, PA, 2004.

G. Oriolo and Y. Nakamura. Control of mechanical

systems with second-order nonholonomic constraints:

Underactuated manipulators. In Proc. IEEE Conf. on

Decision and Control, pages 2398–2403, 1991.

G. Oriolo, M. Vendittelli, A. Marigo, and A. Bicchi.

From nominal to robust planning: The plate-ball ma-

nipulation system. In Proc. IEEE Int’l Conf. on

Robotics and Automation, pages 3175–3180, 2003.

M. Phillips, B. Cohen, S. Chitta, and M. Likhachev.

E-graphs: Bootstrapping planning with experience

graphs. In Proc. Robotics: Science and Systems, 2012.

M. Pivtoraiko and A. Kelly. Efficient constrained path

planning via search in state lattices. In 8th Int’l Symp.

on Artificial Intelligence, Robotics and Automation in

Space, 2005.

M. Pivtoraiko, R. A. Knepper, and A. Kelly. Differ-

entially constrained mobile robot motion planning in

state lattices. Journal of Field Robotics, 26(3):308–

333, 2009.

E. Plaku, L. E. Kavraki, and M. Y. Vardi. Motion

planning with dynamics by a synergistic combination

of layers of planning. IEEE Transactions on Robotics,

26(3):469–482, 2010.

PR2. http://www.willowgarage.com/pr2, 2009.

Rezero. http://www.rezero.ethz.ch, 2010.

A. A. Rizzi, J. Gowdy, and R. L. Hollis. Distributed

coordination in modular precision assembly systems.

The International Journal of Robotics Research, 20

(10):819–838, 2001.

B. Rohrer, S. Fasoli, H. I. Krebs, R. Hughes, B. Volpe,

W. Frontera, J. Stein, and N. Hogan. Movement

smoothness changes during stroke recovery. Journal

of Neuroscience, 22(18):8297–8304, 2002.

M. Shomin and R. Hollis. Differentially flat trajectory

generation for a dynamically stable mobile robot. In

Proc. Int’l. Conf. on Robotics and Automation, 2013.

M. W. Spong. Underactuated mechanical systems.

In Control Problems in Robotics and Automation.

Springer-Verlag, 1998.

A. Stentz. The focussed D∗ algorithm for real-time re-

planning. In Int’l Joint Conf. on Artificial Intelligence,

Aug. 1995.

M. Stilman, J. Olson, and W. Gloss. Golem Krang:

Dynamically stable humanoid robot for mobile ma-

nipulation. In IEEE Int’l Conf. on Robotics and

Automation, pages 3304–3309, 2010.

R. Tedrake. LQR-trees: Feedback motion planning on

sparse randomized trees. In Proc. Robotics: Science

and Systems, 2009.

R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W.

Roberts. LQR-trees: Feedback motion planning via

sums-of-squares verification. International Journal of

Robotics Research, 29(8):1038–1052, 2010.

M. M. Tobenkin, I. R. Manchester, and R. Tedrake.

Invariant funnels around trajectories using sum-of-

squares programming. In IFAC World Congress, 2011.

APPENDIX A: INDEX TO MULTIMEDIA EXTENSIONS

The multimedia extensions to this article are at:

www.ijrr.org.

Extension Type Description

1 Video It demonstrates the ballbot achieving fast
and graceful motions by manually
switching between gracefully composable
motion policies

2 Video It demonstrates the ballbot autonomously
navigating an obstacle-ridden environment
to successfully achieve point-point
motions while handling disturbances, and
also to achieve a surveillance motion
with four goals. It also shows the ballbot
achieving a point-point motion while
replanning in real-time to successfully
avoid dynamic obstacles

26

International Journal of Robotics Research (IJRR), Special Issue: Motion Planning for Physical Robots
Volume 32, Issue 9 – 10, pp. 1005 – 1029, September 2013

