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The Physical Basis of Perceived Roughness in
Virtual Sinusoidal Textures
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Abstract—Using a high-fidelity haptic interface based on
magnetic levitation, subjects explored sinusoidal textures and
reported the subjective magnitude of perceived roughness.A
psychophysical function was obtained spanning 33 levels of
spatial periods from 0.025 to 6.00 mm. Kinematic and dynamic
variables were recorded at 1000 Hz and used to derive a set of
variables to correlate with the psychophysical outcome. These
included position, velocity, kinetic energy, instantaneous force
(based on acceleration), mean force, and variability of thez-
axis force signal from the power spectral density. The force
signal was examined not only across the spectrum, but within
frequency bands associated with FA1 and FA2 mechanoreceptors,
and also for textures with small versus large spatial periods.
The analysis implicates power of the force signal, particularly
at the low frequencies associated with FA1 receptors, as the
physical correlate of perceived roughness of sinusoidal textures.
The relationship between power and roughness held across the
range of spatial periods examined.

Index Terms—Haptics, Psychophysics, Texture, Roughness,
Perception.

I. I NTRODUCTION

T HE question of how humans perceive surface roughness
has been of considerable interest in psychology and the

neurosciences [1], [2], [3], [4], [5], [6], [7], [8] and more
recently, engineering [9], [10], [11], [12], [13], [14]. Research
on perception of real surfaces explored with the bare finger
has described how the roughness percept changes according to
surface properties such as element height, spacing, and shape
(see [15] for a review). Hollins,et al. have proposed aduplex
model of roughness perception, which points to the influ-
ence of different skin mechanoreceptor populations at textural
scales with spatial periods below and above approximately
0.2 mm (microtextures and macrotextures, respectively) [16],
[17], [18]. At the macro-scale, texture perception appearsto
rely on perception of surface geometry by SA1 mechanore-
ceptors, which have small receptive fields and adapt slowly.
In contrast, roughness at the micro-scale appears to reflectthe
responses of the FA2 mechanoreceptors (also called PCs, for
Pacinian Corpuscles), which have large receptive fields and
adapt quickly [19], [20], [21].

Textures can be perceived not only with the bare hand but
when a tool or rigid probe is used to contact the surface. In
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a series of papers, Klatzky, Lederman and associates deter-
mined psychophysical functions relating perceived roughness
to the spatial period of a variety of surfaces explored with
a spherically tipped probe [22], [23], [4], [24]. This work
provides basic data for comparison with the roughness percept
of rendered surfaces that are explored with a simulated tool.
In a previous paper [14] we reported psychophysical functions
for roughness based on virtual textures that closely matched
those findings. The critical requirement was that both the probe
shape and texture in the simulation had to correspond with the
physical reality, as the perceptual judgments strongly depended
on probe and surface geometry. These findings served to
reconcile discrepancies in the virtual-texture literature between
psychophysical functions obtained with different rendering
algorithms [9], [10], [12], [25].

A. The Vibratory Basis of Perceived Roughness with a Probe

When a surface at macro-textural scale is explored with the
bare finger, slowly adapting receptors in the skin allow the
geometry of the textural array to be sensed directly. Regardless
of scale, however, use of an intervening tool means that the
input to the roughness percept is vibratory in nature.

The goals of the present paper are first, to describe in
detail the vibration-based signals produced when surfaces
are explored with a rigid probe, and secondly, to determine
which physical parameters are most related to the concomitant
perception of roughness. In our experiment, subjects explored
virtual sinusoidal surfaces by means of a virtual tool with a
point tip, and then reported perceived roughness magnitude. A
wide range of sinusoidal periods was simulated, with the result
that kinematic and dynamic measures from exploration could
be correlated with the roughness percept across variationsin
textural geometry.

A further important issue is whether the dependencies
between the physical signals from vibration and roughness per-
ception will be frequency-specific. Recall that according to the
duplex model for roughness perception with the bare finger,
different mechanoreceptor populations are operative at coarse
and fine texture scales (SA1 and FA2, respectively). Similarly,
when the textural signal comes from vibrations, as occurs if
a texture is felt with a probe, two types of mechanoreceptors
are implicated as possible neural mediators. In this situation,
unlike the bare finger, both are fast adapting (FA), and hence
vibration sensitive, but they differ considerably with respect
to the frequency ranges that lead to neural excitation. The
FA1 receptor has a frequency range of approximately 5-50
Hz, while the FA2 is specialized to respond to frequencies
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above 50 Hz [19], [20], [21]. If perceived roughness is
based on responses from a particular receptor population, only
physical signals within the operative frequency band wouldbe
expected to correlate with roughness magnitude judgments.
Moreover, to the extent that a particular surface induces low-
or high-frequency signals, excitation of the operative receptor
population(s) would be expected to vary with surface scale.

The approach of correlating perceived roughness with phys-
ical signals from exploration was adopted by Otaduy and Lin
[26], [27], who rendered interactions between two textured
objects. Their algorithm calculated forces and torques based
on the gradient of penetration depth at a local level, under
update rates on the order of 100-200 Hz with 5-10 contact
patches between objects. Using a model of human dynamics
as an input to their model, they were able to demonstrate, in
simulation, that maximum acceleration of the probe followed a
quadratic function over element spacings. The function varied
with probe diameter, applied force and exploratory speed in
ways that were qualitatively similar to the psychophysical
studies of the same factors by Klatzkyet al. [23]. In another
related study, Yoshioka et al. [28] elicited roughness, hardness
and stickiness ratings, along with similarity comparisons, with
both direct and indirect touch for 16 natural textures. Vibratory
measurements were also obtained for each surface under
conditions of passive scanning at a fixed rate of 40 mm/s.
They determined that vibratory power correlated well with
perceived roughness. Previous studies had implicated the PC
mechanoreceptors in the sensation of fine texture under direct
touch and had demonstrated a correlation between vibratory
power, filtered by a function describing the PC frequency
sensitivity, with roughness [29], [30]. Yoshiokaet al. found
that raw vibratory power correlated slightly better than filtered
for indirect touch, although the results were almost indistin-
guishable. However, the study is limited by the freely varying
nature of the stimuli and by the fact that vibrations were
measured under restricted contact conditions, separatelyfrom
the exploration that resulted in judged roughness.

The present study was able to more systematically ad-
dress the issue of the physical underpinnings of perceived
roughness from vibration, by using a high-fidelity haptic
display based on magnetic levitation technology. The device
allowed surfaces to be rendered with high stiffness across
a range of sinusoidal periods spanning0.025 to 6.00 mm.
The kinematics and dynamics of exploration were recorded
at a rate of 1000 Hz during natural exploration. The results
differentiate among a number of candidate physical variables
that potentially underlie the roughness percept and further
examine the frequency specificity of the observed relationship.
To preface our results, the study confirms the importance
of power in the force signal perpendicular to the surface,
and somewhat surprisingly, implicates FA1 mechanoreceptors
across the range of simulated surfaces.

II. EXPERIMENTAL SETUP

A. Magnetic Levitation Haptic Device

Our experiment employed a 6-DOF magnetic levitation
haptic device (MLHD) using Lorentz forces [31], [32], [33]

that is capable of rendering virtual textures with high fidelity.
As shown in Fig. 1, the device features a manipulandum
that is rigidly attached to a lightweight hemispherical flotor.
The flotor has six spherical coils that interact with strong
magnetic fields that enable it to levitate without friction and
without contact with its surroundings. The six Lorentz forces
generated by the coils combine to exert a 6-wrench on the
manipulandum. The position and orientation of the flotor is
tracked by optical sensors. A closed-loop servo algorithm
allows stiffness and viscosity in all axes to be controlled over
a wide range of values. The device has a -3dB bandwidth of
approximately 120 Hz with smooth roll-off to nearly a KHz.
Advanced versions of the device have been commercially
available since 2008.

For our experiments, a proportional-derivative (PD) con-
troller running on an AMD 2100+ processor controlled the
device with a servo update rate of 1000 Hz, proportional gains
set to 10 N/mm in translation and 25 Nm/radian for orienta-
tion, and derivative gains set to 0.04 N/mm/s in translation
and 0.5 N/radian/s for rotation. These gain settings provided a
relatively stiff surface and prevented, to a large extent, rotation
of the manipulandum, which was desirable as onlyz-axis
forces were actively generated by the rendering algorithm.
The force of gravity on the manipulandum was reduced by an
opposing feed-forward force of 5 N that reduced the weight of
the flotor from approximately 580 grams to 70 grams. More
details about the device are available in [14].

Fig. 1. Magnetic Levitation Haptic Device (MLHD) used in the
experiments: (a) photo showing hand and manipulandum, (b) diagram
showing levitated hemispherical flotor with embedded coilsinteract-
ing in strong magnetic fields.

B. Texture Simulation

The experimental stimuli were sinusoidal grating textures
(SGTs). The rendering algorithm treated the haptic interaction
point (HIP) as an infinitely small probe that was mapped
onto a surface, the height of which (z-axis) varied as a
sinusoidal function of distance along thex axis. Width (y
axis) was constant. The orientation of the manipulandum was
controlled to keep it vertical at all times. Contact of the probe
with the surface generated az-axis force proportional to, and
directionally opposed to, its penetration depth. When the probe
was not in contact with the surface, no forces were actively
generated, so that the probe was subject only to the reduced
gravitational force.

Thirty-three virtual SGTs with spatial periods ranging from
0.025 to 6.00 mm were generated according to the algorithm
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described above. The sinusoid amplitude was 0.4 mm peak-
to-peak, consistent with the height of texture elements inves-
tigated by other studies [23]. The smallest grating periods
approached the resolution of the MLHD (5-10 microns). The
largest grating periods allowed 4 spatial periods within the
MLHD’s workspace. The period space was sampled asym-
metrically, with a larger number of samples from the shorter
periods, as can be seen from thex axis results shown in Fig. 2.

An important issue is whether the MHLD is capable of
rendering textures with very small periods. Modeling of the
device using measurements of its damping and spring coeffi-
cients shows that the frequency response has a±3 dB corner
at approximately 120 Hz with slow roll off, at typical gain
settings. This will lead to attenuation of the MLHD’s position-
following capabilities when the device is required to rapidly
traverse sinusoidal gratings with small periods (≤ 0.2 mm).
Another issue is whether, given subjects’ typical movement
speed (reported below as on the order of 25-30 mm/s), the
MLHD is capable of producing the range of frequencies
required to simulate the sinusoidal period. Since the rate for
servoing the device and sampling data is 1000 Hz, the Nyquist
Rate implies that, for the smallest periods encountered, the
expected frequencies (> 500 Hz) are greater than those the
device can accurately reproduce. For periods greater than
0.2 mm, the device should be capable of following a sine
wave without significant attenuation. Although finer textures
approach the limitations of the device, roughness-estimation
data reported below show no evidence of an attenuation in the
region below spatial periods of 0.2 mm.

C. Experimental Design and Procedure

The participants were 27 students associated with the
psychology department at Carnegie Mellon University, who
received credit for participation, or paid and unpaid student
volunteers from other units at Carnegie Mellon. Procedures
for informed consent were used in compliance with University
review, and the project was approved by Carnegie Mellon‘s
ethics board. All subjects used the right hand for exploration
with the MLHD.

Subjects were seated approximately 500 mm from a graph-
ical display used for responses but not texture displays. They
listened to white noise via headphones to prevent auditory cues
to texture. They freely wielded the MLHD manipulandum,
except for a warning that excessive force would cause the
device to shut down. After exploration, they gave an estimate
of the roughness magnitude of the explored surface by entering
a non-zero number that reflected its roughness on a computer
keypad. They were instructed that larger values should cor-
respond to greater roughness magnitude, but no scale was
imposed and no standard was given. The MLHD manipulan-
dum position and force data were recorded throughout the
experiment at 1000 Hz.

The sequence of experimental trials consisted of 33 tex-
tures, presented 4 times each in random order, for a total of
132 recorded trials per subject. A preliminary demonstration
block was included, representing the range of texture to be
experienced in random order.

III. PSYCHOPHYSICAL FUNCTION OF ROUGHNESS

MAGNITUDE

The psychophysical function relating perceived magnitude
to experimentally manipulated variables were calculated for
each subject. Outliers with values greater than ten times a
subject’s overall median response were removed before further
analysis. Because the subject chose his or her own magnitude
estimation scale with which to represent roughness, it was
necessary to normalize the reported values before generating
this function. For this purpose each observation was divided
by the mean of all observations for that subject, then re-scaled
by multiplying it by the mean over all subjects. The 4 values
for each spatial period were then averaged for each subject
and used for statistical evaluation.

Fig. 2. Plot of individual normalized roughness psychophysical
functions for 27 subjects superimposed on their cross subject mean.
Reprinted from [14], copyright IEEE Computer Society.

Superimposed plots of the psychophysical roughness func-
tion for each subject as well as the mean function can be
seen in Fig. 2. Although the functions show considerable
variance between individual subjects, most follow a pattern
of an initial rise followed by a long decline in roughness as
a function of increasing texture period. A one-way ANOVA
found that element spacing had a significant effect on reported
magnitudes (F(32,726)=11.52, p< 0.0001). Note that any
limitations in rendering textures with very small periods are
not apparent in the data, as roughness for sinusoid periods less
than 0.2 mm is not particularly low.

In [14] we characterized the function as bi-partite and
attributed its behavior to either or both of two potential
causes: a transition in the physical property leading to per-
ceived roughness at this spacing, and/or a transition in the
underlying neural processing. However, a fuller understanding
of the perceived roughness of sinusoidal surfaces requiresa
detailed analysis of the signals generated by the probe/texture
interaction, which is the main focus of this paper. We begin
with an analysis of the physical parameters of the stimulus that
may be responsible for the perception of roughness in probe-
based texture exploration. We then consider the implications
of the data for the receptor population that might mediate
roughness perception of rendered sinusoidal surfaces. We
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focus in particular on mechanoreceptors that are thought to
respond to relatively slow vs. fast vibrations (FA1 and FA2).

IV. PHYSICAL PARAMETERS OFEXPLORATION AND

RELATION TO ROUGHNESS

To affect roughness, geometric properties of the surface,
together with exploratory motions, must lead to variations
in the physical inputs to the receptors in the hand. In this
section the kinematic data from the MLHD, captured during
magnitude estimation trials, will first be examined to determine
how probe position, velocity and acceleration change with
sinusoidal period, and to assess whether one or more of
these variables might account for the resulting variationsin
roughness estimates. We then consider the degree to which
roughness correlates with dynamic physical properties, includ-
ing force variability, mean force, kinetic energy and powerin
the force signal. (Note that due to loss of MLHD data for 4
subjects through computer error, this data analysis incorpo-
rates 23 of the 27 subjects for whom roughness magnitude
estimations were reported.)

A. Texture Exploration: Position

We initially describe probe position data, although position
per se (i.e., as cued by sustained skin deflection or signals
to muscles, tendons and joints) is not a likely candidate for
the percept of roughness, given that the receptors related to
texture respond best to changing stimuli [18].

Figure 3 shows typical data for the position of the haptic
device manipulandum during a single trial on two different
surfaces. The large sinusoidal motions are due to subjects’
hand motion back and forth along thex axis as they explore
the sinusoidal grating. Although the ridges and grooves of the
texture extend along they axis, there are smaller sinusoidal
motions along this axis with the same frequency as thex-
axis motion. These result from the fact that motion of the
manipulandum has an angular deviation relative to thex axis;
the difference in phase betweenx- and y-axis motion is due
to a slight arc of the manipulandum during the sweep.

Of greatest interest is the motion on thez axis, which
constitutes the rise and fall of the probe as determined by
the interaction between the subject’s hand, the device, andthe
texture presented. In this experiment a sinusoidal patternwith
an amplitude determined by the penetration depth algorithm
might be expected if the HIP precisely followed the textured
surface. Examining Fig. 3 it can be seen that this is clearly
not the case, especially for sinusoids with small periods.

The deviations in thez-axis path from a pure sinusoid might
reflect the fact that the HIP was not constrained to stay on
the texture surface. Thus subjects might elect to lift it above
the texture or it could fly above the surface due to dynamic
effects. As well, the position of the HIP is determined by the
penetration depth algorithm subject to the force applied bythe
subject, which might vary with time and hand position. Third,
particularly for the textures with a spatial period below 0.2
mm, device resolution and frequency response could prevent
accurate haptic display of the required position, as described
above.

(a)

(b)

Fig. 3. Representative example of manipulandum motion alongx, y
andz axes during a single subject trial on sinusoidal grating texture
with a period of (a) 0.025 mm, (b) 2.5 mm.

B. Texture Exploration: Velocity

We next turn to the velocity of the probe as it moves across
the surface, which determines the temporal frequency with
which texture elements are encountered and hence the change
in position of the probe against the skin with respect to time.
The mean absolute instantaneous velocities, determined from
the first derivative of position recordings of the HIP along each
axis, are shown as a function of sinusoid period in Fig. 4.
Angular velocities about each axis are shown in Fig. 5, A
series of 1-way ANOVAs revealed no effect of sinusoid period
on the velocity along or about any axis exceptz (see Table I).

Velocity F(32,726) p
x-axis 0.27 > 0.05

y-axis 0.22 > 0.05

z-axis 7.16 < 0.001

Roll 0.26 > 0.05

Pitch 0.30 > 0.05

Yaw 0.23 > 0.05

TABLE I
1-WAY ANOVA RESULTS FOR EFFECT OF SINUSOID PERIOD ON

MANIPULANDUM LINEAR AND ANGULAR VELOCITY . ONLY
z-AXIS VELOCITY SHOWS A SIGNIFICANT EFFECT.
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Fig. 4. Cross subject mean trial velocity as a function of sinusoidal
grating period with linear fits forx, y, andz axes.

Fig. 5. Mean angular velocity for roll, pitch and yaw in radians/s. A
linear fit is plotted to each set of data.

It is not surprising that angular velocity was essentially
negligible and did not vary with period, since the device
was constrained in rotation. In contrast, thex-axis andy-
axis motion was freely controlled by the subject. Of particular
interest is the finding that during unconstrained motion, the
x-axis velocity was essentially invariant, despite the factthat
the height of the rendered sinusoid varies along this axis.
Apparently, the subject’s movement speed was not affected
by the shape of the sinusoid. The fact that the roughness
magnitudes were clearly not constant over spatial period, while
velocity was approximately constant, is a strong indication that
velocity is not the controlling factor in perceived roughness.

For a given stimulus explored at a constant rate, the temporal
frequency with which sinusoidal peaks are encountered as a
probe moves is simply thex velocity divided by the sinusoidal
period for that stimulus. An implication of the constancy ofthe
x-axis velocity observed here is that the subject experiences
something close to this ideal frequency, at least on average.
(In practice, the frequency would depend locally on movement
speed and probe trajectory.) Log average temporal frequency
would then be related to log spatial period with a slope of

-1, which was true of the present data (see Fig. 6). The fact
that roughness magnitudes did not follow this linear log-log
trajectory means that temporal frequency can be excluded,
along with x velocity, as the factor that governs perceived
roughness.

Fig. 6. Log-log plot of temporal frequency (mean over subjects)
encountered by subjects versus sinusoidal grating period with first
order fit. Slope =−0.977± 0.008, Y-intercept=1.372± 0.051, R2

=

0.99. Temporal frequency is calculated as a subject’s meanx-axis
velocity divided by the sinusoidal grating period.

Fig. 7. Cross subject mean trial velocity and normalized subject
roughness estimates as a function of sinusoidal grating periods. A
third order fit to each complete data set is shown. (R2=0.97 and 0.95
for roughness and velocity respectively). A linear fit to thedata is
also shown for small periods of 0.025-1.00 mm and for large periods
of 2.25-6.0 mm. (Ascending Roughness FitR2

= 0.80, Ascending
Velocity Fit R2

= 0.87, Descending Roughness FitR2
= 0.9599,

Descending Velocity FitR2
= 0.99.)

Only velocity along thez-axis showed a significant relation
to spatial period (see Fig. 4), F(32,726) = 7.16,p < .001. This
makes thez velocity a candidate for the physical factor that
governs perceived roughness. The velocity function increased
rapidly with increasing period, then decreased more slowly
over the rest of the range of spatial period. This mimics the
pattern of the roughness function, although the latter peaks
slightly earlier along the spatial-period axis.
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Quantitative comparison of the effect of spatial period on
z-axis velocity to that on subjective roughness estimates is
shown in Fig. 7. Note that in this and the following figures
where roughness is compared to a physical predictor, for ease
of comparison the roughness function has been re-scaled so
that its mean matches that of the predictor. (The original
normalization of roughness means that its source scale is
irrelevant.) Clear similarities can be seen in the shape of the
two fit curves. The slope of a straight line fit to the linear
ascending portion of the roughness data was 2.08 mm/s per
millimeter of period (mm/s/mmperiod). A similarly fit line for
the velocity curve had a slope of 4.64 mm/s/mmperiod. The
linear fits to the descending portions of the two curves showed
even greater similarity, with a descending slope of -1.23 and -
1.24 mm/s/mmperiod for roughness and velocity, respectively.
However, the fit curves different substantially in the texture
period where they peak (roughness at 1.39 mm, velocity at
2.10 mm). We will return to consideration of velocity as a
predictor, in comparison with other variables.

C. Texture Exploration: Kinetic Energy

Fig. 8. Mean z-axis kinetic energy compared to roughness as a
function of sinusoid period. A third order fit to each data setis shown
with R2

= 0.99 for the kinetic energy andR2
= 0.97 for roughness.

A linear fit to the data is also shown for small periods of 0.025-1.00
mm and for large periods of 2.25-6.0 mm. (Ascending Roughness
Fit R2

= 0.80, Ascending Velocity FitR2
= 0.93, Descending

Roughness FitR2
= 0.96, Descending Velocity FitR2

= 0.98.)

While z-axis velocity is problematic as a basis for roughness
judgments, the kinetic energy, which is proportional to the
square of velocity, is also a potential candidate. The kinetic
energy,KE, for a mass,m, moving with velocity, v, is
typically calculated as

KE =
mv2

2
. (1)

The moving mass, in this case, comprises the mass of the
flotor. As this is a constant (581 grams) in our case, the
relationship between kinetic energy and the geometry of the
sinusoidal period depends entirely onv2 alone. In Fig. 8 a
plot of kinetic energy as a function of sinusoid period can be

seen, along with a plot of subjects’ roughness estimates at the
same periods (rescaled as described above). A 1-way ANOVA
showed a significant effect of sinusoid period on mean kinetic
energy (F(32,726)=7.62, p< 0.001). The slopes of straight
lines fit to the ascending portion of the roughness and kinetic
energy curves were6.45 and22.5 mm2/s2/mmperiod, respec-
tively. Lines fit to the descending portion of the curves had
slopes of−3.85 and−6.78 mm2/s2/mmperiod respectively.

While the velocity function appeared, on inspection, to be
close to the shape of the roughness function, albeit shiftedin
phase, the kinetic energy function in Fig. 8 differs substantially
from that of roughness. The slope of its linear portion is
dissimilar, and it is no closer in phase to the psychophysical
function for roughness than the velocity function. Kinetic
energy is therefore unsuited as the underlying physical factor
which results in a perception of roughness.

D. Texture Exploration: Force

Another possible physical property that might account for
roughness perception is the force the haptic device exerts
on the subject’s fingers. One way to analyze force is to
examine the effects of acceleration, since force is relatedto the
acceleration byF = ma, where m is the mass of the flotor and
manipulandum. As this is constant, if one assumes that the user
exerts a relatively constant force (consisting of the weight of
their arm and hand plus applied muscular force), acceleration
can be used as a surrogate for the resultant forces experienced
by the subject. (This assumption is supported by a finding
reported below that meanz-axis force is essentially constant
over spatial period.) Here we compute acceleration from the
second derivative of the instantaneous MLHD manipulandum
position, recorded at 1 KHz.

A plot of meanz-axis acceleration, along with roughness
estimates, is shown in Fig. 9. A clear relationship between
roughness and mean instantaneous acceleration can be seen,
although acceleration peaks at a much smaller texture period
(0.3 mm from a third-order fit) than that of roughness (1.39
mm). The slopes of the nearly linear ascending portions of
the function differ by nearly a factor of two (730.8 and470.3
mm/s2/mmperiod for acceleration and roughness respectively)
but are nearly the same for the linear fits to the descending
portions (−89.1 and−118.6 mm/s2/mmperiod for acceleration
and roughness respectively). Given the phase difference, as
with velocity, caution is indicated in inferring that instanta-
neous force accounts for roughness judgments.

As an alternative to inferring force from acceleration, it is
also possible to look directly at the forces commanded by
the MLHD in response to the depth of penetration of the
HIP below the texture. Mean force averaged approximately
10 N, including the feed-forward force of 5 N, across subjects.
However, unlike the instantaneous force as inferred from
acceleration, the meanz-axis force was virtually invariant
across sinusoidal period; by 1-way ANOVA (F(32,726)=0.05,
p> 0.05. Note that wheras mean force pools the force applied
during a trial, mean acceleration yields a measure of the av-
erage instantaneous force, or force variability experienced by
subjects during that time. This suggests that force variability
may be critical to perceived roughness, as is explored next.
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Fig. 9. Meanz-axis acceleration compared to roughness as a function
of sinusoid period. Acceleration and roughness are normalized for
comparison. A third order fit to each data set is shown withR2

=

0.94 for acceleration andR2
= 0.97 for roughness. A linear fit to

the data is also shown for small periods of 0.025-0.3 mm and for
large periods of 1.0-6.0 mm. (Ascending Roughness FitR2

= 0.85,
Ascending Acceleration FitR2

= 0.93, Descending Roughness Fit
R2

= 0.97, Descending Acceleration FitR2
= 0.97.)

E. Texture Exploration: Power

We next consider the force signal’s power (its variability)as
a candidate for the variable mediating roughness perception.
Taking the power spectral density (PSD) of the force signal us-
ing a periodogram technique with 1024 Fast Fourier Transform
points, a PSD periodogram for frequencies from 1-500 Hz was
generated. Since the maglev commanded force is sampled at
1000 Hz, the Nyquist frequency limits the useful signal to
500 Hz. Preliminary analysis of the periodograms showed that
regardless of texture period, most of the power in the signal
was found below 100 Hz, being particularly concentrated in
the band from 5-30 Hz. Total power peaked around a period
of 2-3 mm. The sensitivity to spatial period, discussed further
below, suggests that the total power in the force signal over
the range measured (i.e., below 500 Hz) may be the salient
physical factor perceived as roughness.

A plot of the total power in the PSD periodogram (i.e., in
thez-axis force signal) over the range of sinusoidal texture pe-
riods, averaged over subjects, can be seen in Fig. 10, together
with the psychophysical roughness function (rescaled). A 1-
way ANOVA showed significant effects of sinusoid period on
power (F(32,726)=7.58, p< 0.001). The maximum roughness
and maximum force-signal power occurred at the same texture
period (1.39 mm) while the slopes of linear fits to the
ascending and descending portions of the functions were very
similar, particularly, in the descending limb (see figure caption
for values).

F. Power vs. Other Physical Parameters

To compare the various parameters, correlation coefficients
were computed between the psychophysical function for

Fig. 10. Total power ofz-axis force signal from the power spectral
density compared to roughness as a function of sinusoid period.
Power and roughness are normalized for comparison. A third order
fit to each data set is shown with a maximum of 1.39 mmperiod

andR2
= 0.98 for force power and a maximum of 1.39 mmperiod

and R2
= 0.97 for roughness. A linear fit to the initial (< 1.0

mm texture period) and final (> 1.0 mm texture period) portions
of each curve with slopes as follows: Ascending Power= 1.76
N/mmperiod, R2

= 0.83, Ascending Roughness= 1.38, R2
= 0.80,

Descending Power= −0.98 N/mmperiod, R2
= 0.97, Descending

Roughness= −0.78, R2
= 0.97.

roughness and each of the physical properties investigated.
(This correlation is independent of the scaling of roughness.)
This comparison indicates that the total power in the force
signal is capable of explaining more of the variance in the
roughness psychophysical function than any other property
(see Table II). Stepwise multilinear regression revealed that
the variance in the psychophysical function for roughness was
almost entirely accounted for by the total power in the force
signal,with an R value of 0.984, p<0.001.

Physics Parameter Sum of Squares Correlation p-value
Difference Coefficient

Mean Position 0.0415 0.12 > 0.05

Velocity 0.0418 0.50 < 0.005

Kinetic Energy 0.1287 0.03 > 0.05

Position Power 0.0832 -0.30 > 0.05

Acceleration 0.0297 0.78 < 0.001

Mean Force 0.0424 -0.18 > 0.05

Maximum Force PSD 0.0765 0.23 > 0.05

Freq. Max. Force 0.0195 0.76 < 0.001

Force PSD FA1 Power 0.0578 0.65 < 0.001

Force PSD FA2 Power 0.7514 0.45 < 0.01

Force PSD Total Power 0.0046 0.98 < 0.001

TABLE II
CORRELATION COEFFICIENTS BETWEEN THE PSYCHOPHYSICAL

ROUGHNESS FUNCTION AND FUNCTIONS RELATING VARIOUS
PHYSICAL PARAMETERS TO SPATIAL PERIOD IN THE STIMULUS

(OVER SPATIAL PERIODS FROM0.025-6.0MM ). SUM OF SQUARES
DIFFERENCE IS THE TOTAL OF SQUARED POINT-BY-POINT

DIFFERENCES BETWEEN THE FUNCTIONS, DIVIDED BY THE
SQUARED VALUES OF THE ROUGHNESS FUNCTION FOR

NORMALIZATION .
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Fig. 11. Roughness estimation function compared with the frequency
at which the maximumz-axis force signal, as measured by the power
spectral density, is found. Frequency and roughness are normalized
for comparison. A third order fit to each data set is shown with
a maximum at 1.88 mmperiod and R2

= 0.89 for frequency and
a maximum at 1.39 mmperiod and R2

= 0.97 for roughness.
A linear fit to the initial (< 1.0 mm texture period) and final
(> 1.75 mm texture period) portions of each curve with slopes
as follows: Initial frequency= 4.28 Hz/mmperiod, R2

= 0.63,
Initial Roughness= 2.38, R2

= 0.80, Final frequency= −1.45
N/mmperiod, R2

= 0.96, Final Roughness= −1.42, R2
= 0.97.

Outliers greater than 10 x the mean over subjects were removed from
the frequency data.

G. Frequency Distribution of Power

Although these results indicate that the total signal powerof
force is closely coupled with roughness, it is important to note
that the power is not evenly distributed across the frequency
spectrum. One-way ANOVAs showed significant effects of
sinusoid period on the frequency at which the maximumz-axis
force signal occurred, orfreqmax, (F(32,726)=4.22, p= 0.00)
and on maximumz-axis force signal power itself, orforcemax

(F(32,726)=3.15, p< 0.001). The form of these dependencies
is seen in Fig. 11 and Fig. 12, respectively. The similarity
in the shape of the functions, together with the location of
the peak of bothfreqmax and forcemax at texture periods
higher than that of roughness, suggesting that the two are
coupled. That is, a texture surface geometry that produces
a higher-frequency power also produces a greater maximum
force signal. Variations in roughness lag variations in these
coupled signals, across the range of sinusoidal periods.

V. FREQUENCY DISTRIBUTION OF POWER AND

MECHANORECEPTORPOPULATIONS

Given that the frequencies that primarily contribute to power
can be identified from the data, we can ask whether the
observed frequencies are related to the sensitivity of partic-
ular mechanoreceptor populations, particularly those that are
sensitive to vibration. In particular, the force signal canbe
partitioned into two bands of frequency: 5-50 Hz, a response
range roughly that of the FA1 receptors, and> 50 Hz, a range
associated with the FA2 receptors. For ease of exposition,
these will be labeled the FA1 and FA2 bands, respectively. The

Fig. 12. Roughness function compared with the maximumz-axis
force signal, as measured by the power spectral density. Maximum
force and roughness are normalized for comparison. A third order
fit to each data set is shown with a maximum at 2.45 mmperiod

and R2
= 0.93 for frequency and a maximum at 1.39 mmperiod

andR2
= 0.97 for roughness. A linear fit to the initial (< 1.0 mm

texture period) and final (> 2.00 mm texture period) portions of
each curve with slopes as follows: Initial PSD= 2.29 N/mmperiod,
R2=0.86, Initial Roughness= 1.05, R2

= 0.80, Final PSD= −0.61
N/mmperiod, R2

= 0.91, Final Roughness= −0.62, R2
= 0.97.

Outliers greater than 10 x the mean over subjects were removed from
the PSD data.

power in the force signal can then determined for each of these
bands for each experimental trial. For each sinusoidal texture
period this band-limited force signal power was averaged over
subjects and iterations. One-way ANOVAs showed an effect
of texture period onz-axis force signal power in both ranges
(FA1: F(32,726)=7.79, p< 0.001, FA2: F(32,726)=77.62, p<
.001).

The band-limited force signal power function for the so-
called FA1 and FA2 ranges can be seen in Figs 13 and 14. The
psychophysical roughness function is shown for comparison,
again normalized to the force signal. It is clear that neither
the FA1 nor FA2 bandwidths coincides with the roughness
function as well as the PSD total power (see Table II) although
the FA1 function demonstrates a similarly shaped curve with
a peak that lags that of roughness.

To further pursue the relationship between force frequency
power and roughness, we asked what portion of the peri-
odogram best accounts for roughness judgments. The power
in a 20-Hz window spanning a base frequencyf to f +
20 Hz, was correlated with roughness across all trials, to
produce a correlation for the givenf . This was repeated by
moving f across the frequency range from low to high. As
shown in Fig. 15, as the window moves across the frequency
range of 500 Hz from low to high, the peak in correlation
(approximately 0.90) occurs when the window is at 20-40
Hz, which is well within the bandwidth associated with FA1
receptors but below that of FA2s.

A further analysis asked whether the power within the FA1
band is sufficient to account for roughness judgments. That
is, does the higher-frequency power contribute at all, or might
it even introduce noise and reduce the correlation between
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Fig. 13. Power Spectral Density ofz-axis forces within the approxi-
mate FA1 receptor frequency range (5-50 Hz), compared to roughness
as a function of sinusoid period. PSD and roughness are normalized
for comparison. A third order fit to each data set is shown witha
maximum of1.94 mmperiod and R2 = 0.97 for PSD and a maximum
of 1.39 mmperiod and R2 = 0.97 for roughness. A linear fit to the
initial (< 1.0 mm texture period) and final (> 1.5 mm texture period)
portions of each curve with slopes as follows: Initial PSD= 4.12
N/mmperiod, R2

= 0.93, Initial Roughness= 1.29, R2
= 0.80, Final

PSD= −1.17 N/mmperiod, R2
= 0.97, Final Roughness= −0.76,

R2
= 0.97.

power and roughness? Cholewiak et al. [34] have shown that
higher-frequency components can enhance threshold detection.
To address this question, we heldf constant at 5 Hz to anchor
the lower end of a frequency window in which power was
accumulated. As the window’s higher end moved across the
frequency range in 1-Hz increments to a maximum of 500 Hz,
expanding the window in which power was accumulated, we
examined the correlation across trials between roughness and
total power.

Figure 16 shows the results of this analysis. Correlations
were low and variable until the window’s upper end reached
approximately 15 Hz. Beyond that, the correlation coefficient
rose steadily to reach to> 0.80 at approximately 100 Hz,
p < 0.01. Most of the signal that for roughness perception
appears to be coming from frequencies below 50 Hz (FA1
band), but higher frequencies, up to 350 Hz, appear to be
required to achieve correlations of> 0.98. This result points
to some value within the FA2 range.

One possibility is that the contribution of high- and low-
frequency FA receptors varies with the density of the stimulus
elements. Similar specialization of receptors according to
surface properties is proposed by the duplex mode of texture
perception via the bare finger [18] (although in that case slowly
adapting receptor populations are implicated). If FA receptors
partition the textural range for sinusoidal surfaces explored
with a probe, a natural expectation is that textures with
small periods generate more high-frequency vibration and lie
within the FA2 bandwidth, whereas textures with large periods

Fig. 14. Power Spectral Density ofz-axis forces within the FA2
receptor frequency range (50-500 Hz), compared to roughness as
a function of sinusoid period. PSD and roughness are normalized
for comparison. A third order fit to each data set is shown with
a maximum at 0.025 mmperiod and R2

= 0.99 for PSD and a
maximum at 1.39 mmperiod andR2

= 0.97 for roughness. A linear
fit to the initial (< 1.0 mm texture period) and final (> 1.0 mm
texture period) portions of each curve with slopes as follows: Initial
PSD= −5.77 N/mmperiod, R2

= 0.96, Initial Roughness= 0.80,
R2

= 0.80, Final PSD= −0.49 N/mmperiod, R2
= 0.52, Final

Roughness= −0.61, R2
= 0.97.

Fig. 15. Correlation coefficient between subjective roughness and the
power in the force signal in a 20 Hz window sliding across the PSD
periodogram. The window’s lower edge is at the frequency displayed
on thex axis. The FA1 and FA2 frequency bandwidths are indicated
with arrows.

generate more low-frequency vibrations and excite the FA1
receptors. Accordingly, roughness for small periods should be
more influenced by the power in the higher frequency band
of the force signal, and roughness for larger periods by the
power in the lower frequency range.

To test this hypothesis, the relation between roughness and
power of the force signal was again examined with windows
of increasing size, but separately for textures with relatively
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Fig. 16. Correlation coefficient between subjective roughness and
the power in the force signal in a frequency window of increasing
size. The window’s lower frequency is fixed at 5 Hz. The correlation
coefficient is plotted against the the window’s upper frequency which
is used as the independent variable. The FA1 and FA2 frequency
bandwidths are indicated with arrows.

Fig. 17. Correlation coefficient between subjective roughness and
the power in the force signal for small period (0.025-0.5 mm)and
large period (2.0-6.0 mm) sinusoidal textures in a frequency window
of increasing size. The window’s lower frequency is fixed at 5Hz.
The correlation coefficient is plotted against the window’supper
frequency, which is used as the independent variable.

small and large periods. For these purposes, texture ranges
were selected where the roughness function was approximately
linear with spatial period: 0.025-0.5 mm for the small range,
and 2.0-6.0 mm for the largest. Fig. 17 shows the results
for textures with small and large periods. The data give little
support to the idea that high-frequency information contributes
more to the textures with small spatial periods. Contrary to
expectations, power within frequency windows of less than
50 Hz was highly correlated with roughness for both large
and small period textures. Moreover, the textures with small

periods actually evidenced a stronger correlation with low-
frequency power than those with large periods, and the peak
correlation was reached somewhat lower in the frequency
range for the finer textures than the coarse. Thus it appears
that the predominance of low-frequency information in deter-
mining roughness holds across the geometric variations in the
stimuli.

VI. D ISCUSSION

The present research sought an account of the perceived
roughness of sinusoidal surfaces explored with a probe, in
terms of the physical variables concomitant with exploration.
The variables that were examined included kinematics (probe
position, velocity and acceleration) and dynamic physical
properties (force variability, mean force, kinetic energyand
power in the force signal). The initial analysis focused on
how these parameters change with sinusoidal period and cor-
related the variations with estimates of perceived roughness.
Ultimately, the power in the z-axis force signal was found to
be strongly related to the roughness judgment across a broad
range of geometric variation. Further detailed investigation of
the vibratory signal implicated the low-frequency component,
theoretically associated with the FA1 mechanoreceptors, as
most critical across the stimulus range.

Convergent evidence for this conclusion was found in
experiments that used texture elements in the shape of trun-
cated cones, both regularly spaced and in randomly dithered
arrangements, described in [14]. The probe was rendered as
having a spherical tip with four radius values between 0.25
and 1.5 mm. As the number of rendered stimuli in those
studies was much smaller than in the experiment reported
here (11 vs. 33 in the experiment with SGTs), the correlations
are less reliable, and inferences are limited. Indeed, in both
studies with conical elements, there were stronger correlations
between all the physical parameters and roughness than in
the current study with sinusoids, but correlations betweenthe
roughness function and thez-axis total power function were
again high: .94 or greater in both conical-texture studies for
all probe sizes.

The present results confirm earlier observations in the
literature that point to force variability as critical to roughness
perception through a probe [26], [27], [28]. While Yoshioka
et. al converged on power as the underlying variable, Otaduy
and Lin chose acceleration. The latter is not surprising, as
the total power can be seen as a measure of the variability
of the force to which a subject’s fingers are exposed as they
move the manipulandum across a textured surface. One would
expect, then, that instantaneous acceleration would correlate
moderately well with roughness, since it, too, provides a
measure of the variability of force. It is also understandable
that the correlation is much better for the textures with larger
periods, since instantaneous acceleration is determined from
the second derivative of position and is subject to noise,
particularly in the high frequency range of the spectrum.

VII. C ONCLUSION

This research supports a physical account of the roughness
judgment when people explore sinusoidal surfaces with a
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probe, in terms of the power in the z-axis force signal. More-
over, the low-frequency component of the vibratory signal
appears to carry greatest weight, regardless of the geometry
of the stimuli. In addition to contributing to our understanding
of the perceived roughness of textures explored through a
rigid probe, the present study points to the value of high-
fidelity haptics for rendering such surfaces. Even the finest
textures rendered here, which pushed at the boundaries of
device limitations, appear to have produced the impression
of an underlying surface with tangible roughness.
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