
IEEE TRANSACTIONS ON HAPTICS, VOL.4, NO. 2, APRIL-JUNE 2011 1

Roughness Perception in Virtual Textures
Bertram Unger, Member, IEEE, Ralph Hollis, Fellow, IEEE, and Roberta Klatzky

Abstract—Haptic devices allow the production of virtual textured surfaces for psychophysical experiments. Some studies have shown
inconsistencies between virtual and real textures with respect to their psychophysical functions for roughness, leading to speculation
that virtual textures differ in some way from real ones. We have determined the psychophysical function for roughness using textures
rendered with a high-fidelity magnetic levitation haptic device. A constraint surface algorithm was used to simulate the motion of a
spherical probe over trapezoidal gratings and randomly dithered cones. The shape of the psychophysical functions for roughness is
consistent between subjects but varies with changes in texture and probe geometry. For dithered cones, inverted “U”-shaped functions
were found nearly identical, in maxima and curvature, to those in the literature for real textures with similar geometry.

Index Terms—Haptics, Psychophysics, Texture, Roughness, Perception.
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1 INTRODUCTION

TO understand the perceptual processes involved in
perceiving texture by touch, a common approach

relies on determining the relationship between a physical
factor in the environment and a quantifiable measure of
the perception of that factor as texture. The perceived
textural dimension most commonly studied is roughness
[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], since it
has been found to be systematically related to a number
of physical properties.

A carefully controlled analysis of the relationship be-
tween physical stimuli and roughness was conducted by
Lederman [6]. The experiments, carried out with a bare
finger on a set of manufactured gratings, demonstrated
that perceived roughness was directly related to the
spatial deformation of the fingertip’s skin by the textured
grooves [6], [11], [13], [14], [15]. The velocity of the finger
during active or passive exploration [6], [8], [11] had no
effect, further implicating a spatial code. Other support-
ing findings come from neurophysiological studies that
measure the output of the mechanoreceptors present in
the fingertip skin of primates in relation to perceived
roughness [2], [16], [17], [18], [19], [20]. Temporal coding
is also disconfirmed by the finding that selective adap-
tation of receptors to vibration results in little change in
perceived roughness [14].

Recent studies indicate that while spatial effects pre-
dominate with bare-finger texture perception, vibrational
and temporal cues may provide an alternative channel
of information [1], [21]. While selective adaptation of vi-
brational receptors (FA1’s and FA2’s) does not preclude
roughness perception, it does produce changes in its
quality [22], [23]. Hollins et al. developed a duplex theory
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of texture perception [23], [24], [25] demonstrating that
the roughness of small period textures (< 1 mm) may be
mediated by vibration, while that of larger periods may
be mediated by spatial cues.

The interposition of a rigid link, such as a probe, be-
tween surface texture and the user removes the possibil-
ity that spatial effects can mediate roughness perception.
Nevertheless, studies demonstrate clearly that roughness
is well differentiated when textured surfaces are ex-
plored with a probe [5], [26], [27]. These findings suggest
that in the absence of spatial information, vibrational
information can underlie roughness perception. The role
of vibration is supported by the fact that roughness
estimates using a probe are affected by changes in probe
speed [26], [28], in contrast to Lederman’s work with the
bare finger [14].

There is, however, a difference in the psychophysical
function relating judgments of roughness magnitude
to the physical structure of a textured surface when
surfaces are felt with a probe, in comparison to the
bare finger. Klatzky and associates found that as the
spacing between elements on a surface increased, so too
did subjects’ estimates of surface roughness, rising to a
maximum and then falling off [26], [28]. The resulting
roughly quadratic shape of perceived roughness inten-
sity versus element spacing was attributed to the geo-
metric relationship between probe and elements. Based
on these data, Klatzky et al. developed a geometric model
of probe-texture interaction. This model predicts, based
on texture geometry, the effect of changing probe size on
roughness intensity [28]. In the case of a non-point probe
with real physical size, when element spacings are small
with respect to the probe tip, the probe travels along the
tops of the elements, penetrating only slightly, if at all
(see Fig. 1, bottom). The forces transmitted by the probe
to the finger will vary only slightly. As element spacing
increases, the probe tip begins to penetrate more deeply
between gratings and, for a given probe speed, force
variation will increase. At a spacing where the probe
penetrates to maximum depth and follows the texture
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surface precisely (referred to by Klatzky et al. as the drop-
point (DP); see Fig. 1, top panel), roughness intensity
should be maximal. Further increases in element spacing
now result in decreases in force variation and thus lower
perceived roughness intensity. The geometric model’s
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Fig. 1. The effect of texture spatial frequency on probe motion
amplitude.

predictions were experimentally verified by Klatzky et
al. When a spherical probe was used to explore textures
with varying inter-element spacings, the psychophysical
function relating roughness to spacing was an inverted
“U” that was roughly quadratic in shape. This curve had
a maximum near the predicted element spacing [28].

Haptic devices have created new possibilities for the
study of texture perception. Haptic simulations of tex-
ture vary the position and/or forces applied to the hand
while users move a probe across a textured surface.
The parameters can be accurately and rapidly changed,
allowing researchers to investigate human perceptual
responses to a wide range of textures. Although haptic
textures can be rapidly simulated at less cost than their
physical counterparts, serious questions remain about
their validity. Do they accurately represent physical tex-
tures? Does simulation introduce significant or subtle
changes in the perceptual quality of the texture? Is the
human psychological response the same for simulated
and real textures?

Interestingly, initial attempts to mimic psychophysical
data by using haptic simulations of probes exploring
gratings have not been successful. Studies demonstrate
that as groove width (and thus element period) increases,
roughness perception usually decreases in a linear fash-
ion, although individual fits may vary [4], [7], [9], [29].
The quadratic roughness perception function of Klatzky
et al.’s studies on real textures, which was reliably ob-

served across individual subjects, is not seen in these
simulations. The source of the discrepancy is not clear; it
may be related to limitations in the haptic system itself or
to simplifications and assumptions made by the texture
simulation model.

Penn et al. speculated that the decline in roughness
perception experienced by subjects in studies employing
sinusoidal virtual textures is due to the infinitesimal
nature of the haptic interaction point (HIP) used in the
haptic model [9]. Given its size, the HIP follows the
sinusoid exactly, regardless of period, and thus shorter
periods may result in higher-frequency vibrations and
increased changes in force along the direction of the
probe axis. Since human roughness estimations have
been shown to be correlated with the rate of change of
tangential force on the finger pad during direct touch,
this may explain the decrease in perceived roughness
with increasing wavelength seen in virtual-texture stud-
ies [10].

In this paper we employ a high-fidelity haptic device
to generate a variety of virtual textures and investigate
their subjective roughness. We first examine sinusoidal
grating textures explored with an infinitely small virtual
point probe. Unlike previous studies, we find a consis-
tent psychophysical function relating sinusoidal wave-
length to perceived roughness. We then consider the
interaction of probe and texture geometry and develop
a trapezoidal grating texture which can be explored
with a spherical probe. Perceived roughness for these
textures exhibits a substantially different psychophysical
function, lending support to the idea that the virtual
model’s characteristics play a large role in determining
its perceived roughness while hardware considerations
may be less important. Finally, we demonstrate that, by
careful simulation of texture and probe geometry, rough-
ness perception of virtual surfaces, as measured by the
psychophysical function, can be essentially equivalent to
that of real surfaces.

2 EXPERIMENTAL SETUP

2.1 Magnetic Levitation Haptic Device
Our experiment employs a 6-DOF magnetic levitation
haptic device (MLHD) using Lorentz forces [30], [31],
[32]. Performance characteristics are given in Table 1.

The system is capable of rendering virtual textures
with high fidelity. A proportional-derivative (PD) con-
troller running on an AMD 2100+ processor controlled
the device with a servo update rate of 1000 Hz. Propor-
tional gains were set to nominal values of 10 N/mm in
translation and 25 Nm/radian for orientation. Deriva-
tive gains were set to 0.04 N/mm/s in translation and
0.5 N/radian/s for orientation. Only z-axis forces were
actively generated by a penetration depth algorithm and
rotation was not permitted. The device inherently has
no static friction and static friction was not simulated.
A feedforward force was applied, reducing the force of
gravity on the manipulandum (see Fig. 2).
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Parameter Value
Translational range 25 mm
Rotational range 15-20◦
Motion resolution 5-10 µm
Perceived mass 580 g
Perceived inertia 0.0054 kg/m2

Maximum force > 55 N
Maximum torque > 6.3 Nm
Maximum stiffness 25 N/mm
Minimum stiffness .005 N/mm
Position bandwidth 120 Hz

TABLE 1
Performance characteristics of the magnetic levitation haptic

device used in the experiments.

Fig. 2. Subject’s hand on the manipulandum of the magnetic
levitation haptic device.

2.2 Texture Simulation Algorithms
We conducted three experiments using three different
virtual textures: a sinusoidal grating texture (SGT), a
trapezoidal grating texture (TGT) and a dithered conical
texture (DCT) of truncated cone-shaped elements.

The SGT is the simplest of the simulations; it maps
the HIP as an infinitely small probe. When the probe is
in contact with the surface, a force is generated propor-
tional and opposed to its penetration depth into a virtual
sinusoidal surface along the z axis. The orientation of
the manipulandum is controlled to keep it vertical at all
times. When the probe is not in contact with the surface
it is allowed to fly freely, experiencing no forces other
than gravity.

In order to explore the interaction of probe and
texture geometry a more sophisticated algorithm was
developed. The probe is no longer considered to be a
point and is given size and shape. Changing the probe
geometry from an infinitely small point to an object that
has some shape means that the HIP at the probe center
can no longer follow texture contours exactly, but instead
must follow a surface determined by the interaction of
probe shape and texture geometry, as seen in Figure 3.
This surface is used to control the position of the HIP as
if it were at the center of a probe with some substantive
shape (a spherical case is shown in Fig. 3). We refer to
the surface followed by the HIP under these conditions
as the constraint surface (CS).

The CS is composed of groupings of all the points
for which the same motion constraints apply, a concept
well known from the motion planning literature [33]. In
practice, a set of parametric equations is used to indicate
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Fig. 3. Cross-section of trapezoidal grating texture with in-
flection points: (a) small probe, (b) larger probe, (c) very large
probe.

the desired height, zdes, of the HIP above the base plane
of the texture (located at 0 on the z axis) given its current
x and y coordinates (see Appendix A).

During initialization of a texture, the (x, y) location of
each element is stored in computer memory. Using the
coordinates of the HIP in the physical device workspace
as an index into memory, the algorithm determines the
nearest element to the HIP. The distance from the HIP
to the element determines the parametric equation to be
used in the calculation of the height of the CS at that
point, zdes. The difference between the desired probe
height zdes, and the actual location of the point zact, is
the error signal zerr. The zerr value is used by a PD
controller running at 1000 Hz to calculate the output
force required to drive the position error to zero. Haptic
textures are thus generated from the CS model as the
MLHD manipulandum is moved through the device
workspace. As a subject moves about the (x, y) plane, the
manipulandum moves up and down vertically, its height
depending on the geometry of the probe and the texture
which is modeled beneath it. Given the geometry of
the texture elements (described below), the update rate,
and subjects’ typical exploration speed, this algorithm
produces highly stable textures.

It is important to note that the CS model, as formu-
lated, is a quasistatic model which assumes that motions
between control cycles will be very small. Under its as-
sumptions, the probe is regarded as effectively stationary
at any given instant in time, and dynamics are assumed
to play no role in its behavior.
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Two different constraint surfaces are used in our ex-
periments. The first CS is based on the interaction of
a spherical probe with a TGT. This texture, with its
sharp inflection points, provides a significant departure
from the smoothly curved SGTs commonly used in
other studies [4], [7], [9], [29]. The second CS derives
from a spherical probe and pseudo-randomly distributed
truncated conical elements. This DCT surface is intended
to compare closely with real textures used by Klatzky et
al. in psychophysical studies of indirect touch [28].

2.3 General Experimental Design and Procedure

Roughness magnitude estimation experiments were per-
formed by subjects from a student pool associated with
the psychology department at Carnegie Mellon Univer-
sity, who received credit for participation. Additional
subjects were paid and unpaid student volunteers from
other departments and from within the Microdynamics
Systems Laboratory at Carnegie Mellon. All experiments
were performed with IRB approval.

Subjects were seated approximately 500 mm from a
graphical display. Textures were presented haptically to
the user’s right-hand fingertips and palm by the MLHD
manipulandum. Subjects could not see the texture and
listened to white noise via headphones to prevent audi-
tory identification of texture roughness.

Subjects were informed that they would be presented
with a variety of textures to explore with the MLHD
manipulandum. No restrictions were placed on explo-
ration other than a warning that excessive force would
cause the device to shut down. After exploration, they
gave an estimate of the roughness magnitude of the
explored surface by entering a number on a computer
keypad. Instructions indicated that larger numbers were
to reflect larger values of roughness, and that zero or
negative numbers should not be used. In addition to the
magnitude response, MLHD manipulandum position
and force data were recorded throughout the experiment
at a 1000 Hz sampling frequency. Trials representing each
combination of a texture and probe were presented to
subjects a number, niterate, of times, to reduce variability
in the magnitude estimates. If there were nspace element
spacings and nsize probe sizes, then a subject explored
ntrials = niteratenspacensize texture surfaces in the course
of the experiment. A preliminary demonstration block
was included, representing the range of texture to be
experienced. The order of texture-probe pairings was
randomized within both demonstration and experimen-
tal blocks.

2.4 Determining the Psychophysical Function

We use the psychophysical function, S = Ψ(I), to assess
the effects of geometry on roughness perception. The
process for determining S = Ψ(I) uses subjects’ numeric
responses to estimate their roughness perception, S, of
a stimulus having an inter-element spacing of texture

elements, I . If there are k = 1, ..., nspace different inter-
element spacings, a single experimental trial consists of
a subject’s numerical estimate of the roughness of the
kth texture spacing and Sk = Ψ(Ik). Multiple iterations
of each trial are performed and averaged to obtain a
single data point in the subject’s psychophysical function
for roughness, S̄k = Ψ̄(Ik). Outlier estimate values more
than 10 times the median of a subject’s estimates were
considered to be due to subject data entry error and were
excluded from the calculations.

If there are i = 1, ..., nsubj subjects in an experiment,
a single subject’s psychophysical profile, Si = Ψ(Ii), can
then be described as the set

Si = {S̄1, S̄2, ..., S̄nsubj
}. (1)

Because each subject chose his or her own magnitude
estimation scale with which to represent roughness, it
was necessary to normalize the Si = Ψ(Ii) values for
purposes of comparison. The normalized percept, Ŝi was
obtained by dividing Si by the mean of all estimates by
subject i, and multiplying by the mean of all estimates
by all subjects in the experiment. The normalized means
for a given probe size can then be averaged across
all subjects in the experiment to yield a cross-subject,
normalized mean perception, S̄ = Ψ(I). In the remainder
of this paper we will simply use Ψ(I) to refer to the
normalized individual-subject function or the averaged
function, as appropriate in context.

3 SINUSOIDAL GRATING TEXTURE EXPERI-
MENT

3.1 Experimental Design
Virtual SGTs (see Fig. 4) with spatial periods ranging
from 0.025 to 6.00 mm were generated using the MLHD.
A penetration depth algorithm was used. The smallest
grating periods approached the resolution of the MLHD.
The largest grating periods allowed 4 spatial periods
within the MLHD’s workspace. Thirty-three different
periods were used. The period space was sampled
asymmetrically, with a larger number of samples from
the shorter periods. The sinusoid amplitude was 0.4
mm peak-to-peak, consistent with the height of texture
elements investigated by other studies [28].

The experiment used an infinitely small point-probe.
A demonstration block (33 trials) was followed by ex-
perimental trials consisting of 33 textures, presented 4
times each in random order, for a total of 132 recorded
trials.

3.2 Results and Discussion
Magnitude estimation data were collected for 27 subjects.
The psychophysical function Ŝi = Ψ(Ii) was calculated
for each subject and the overall psychophysical function
S̄ = Ψ(I) was found by averaging the normalized
individual functions, following the techniques outlined
in Section 2.4.
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Fig. 4. Graphic representation of four examples of SGTs used
for psychophysical experiments with a (a) 6 mm period, (b) 2
mm period, (c) 0.50 mm grating and (d) 0.25 mm grating.
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Fig. 5. Log-log plot of individual normalized roughness psy-
chophysical functions for 27 subjects superimposed on their
cross subject mean for SGTs.

Superimposed log-log plots of the normalized Ψ(Ii)
for each subject as well as the mean roughness function
can be seen in Fig. 5. Although the functions show
considerable variance between individual subjects, most
follow a pattern of an initial rise followed by a decline
in roughness as a function of increasing texture pe-
riod. A one-way ANOVA showed that element spacing
had a significant effect on roughness magnitude (F(32,
726)=11.52, p< 0.0001).

The mean roughness function changes in slope from
positive to negative at an element spacing of approx-
imately 2 mm. The first part of the function, where
periods are less than 2 mm, is flat and has a mean
log-log slope close to zero (see Table 2). The overall
slope for periods of greater than 2 mm is approximately
-0.8, virtually identical to the log-log slope (Stevens’
power law exponent b) determined by others for similar
surfaces [4].

The reasons for the bipartite behavior of roughness
estimates on SGTs is unclear. One possibility is that the
magnitude of the as yet undetermined physical property
underlying the roughness of SGTs is relatively constant
below a 2 mm period but declines above 2 mm. In

(a) (b)

(d)(c)

Fig. 6. Graphic representation of four examples of TGT used
for psychophysical experiments with a (a) 0.96 mm period, (b)
1.96 mm period, (c) 3.46 mm grating and (d) 5.96 mm grating.

this case the magnitude of this physical property should
correlate with roughness perception; it should show a
flat or slightly rising slope below a 2 mm period and a
more steep, descending slope above it. A second expla-
nation is that the bipartite behavior is a function of the
underlying neural processing. For example, it is possible
that sinusoidal gratings spaced more closely than 2 mm
create vibrations that are below the threshold of the
operative neuroreceptors or elicit a constant receptor
response. Finally, device or algorithm limitations may
limit rendering for smaller texture spacings.

4 TRAPEZOIDAL GRATING TEXTURE EXPERI-
MENT
4.1 Experimental Design
Virtual TGTs similar in height, width and side angle (see
Figure 6) to Klatzky et al.’s fabricated truncated cone
textures [28] were generated using the CS algorithm.
Elements were 0.42 mm high with a plateau width of
0.46 mm and a base width of 1.04 mm. These dimensions
result in an element side angle, α, of 53◦. Element spac-
ings ranged from 0.96-5.96 mm. Four probe radii (0.25,
0.5, 1.0 and 1.5 mm) were used, allowing comparison
with Klatzky et al.’s physical texture studies where probe
radii ranged from 0.5-1.5 mm [28].

Nine female and 17 male subjects, including 3 left-
handed, performed the experiment. All subjects used the
right hand.

An experimental trial consisted of a subject exploring
a single texture period with a single probe radius. Four
probe sizes, eleven texture periods and 3 iterations pro-
duced 132 trials per subject. The experiment was blocked
by probe size, with 3 repetitions of each texture period
randomly ordered within a block. Each block began with
six demonstration trials using that block’s probe size.
Block order was randomized between subjects to prevent
learning effects.

4.2 Results
The psychophysical function for roughness perception,
Ψ(I), was obtained for each subject and the mean over
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Texture Period Range [mm] Mean slope Median σ Maximum Minimum # Positive/Negative
0.025-1.75 0.067 0.041 0.118 0.328 -0.160 20/7
2.25-6.0 -0.823 -0.703 0.676 0.084 -2.775 2/25

TABLE 2
Slope of roughness function in a log-log plot for small SGT periods (0.025-1.75 mm) and large SGT periods (2.25-6.0 mm).
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Fig. 7. Unconstrained nonlinear optimization fit of logistic curve
to mean normalized roughness estimates for TGTs explored
with spherical probes of 0.25, 0.5, 1.0 and 1.5 mm radius.
Vertical lines indicate 80% of height of each curve.

subjects for each probe size, using the averaging and
normalization techniques described in Section 2.4. The
mean psychophysical function data could be fit reason-
ably well with a second order quadratic or third order
polynomial, with R2 values for a second order fit ranging
from 0.93-0.98 across the probe conditions.

Concerning the individual psychophysical functions, a
quadratic fit had a mean R2 value of 0.85 across subjects
and probe types, while the linear fit had a mean R2 of
0.69. Clearly, individual subjects do not perceive texture
as a linear function of element spacing for TGTs, and the
quadratic trend seen in the cross-subject aggregate data
seems consistent with the individual data.

4.3 Discussion

Examining the maxima of the psychophysical functions
seen in Table 3, it can be observed that, for both second
and third order fits, maxima move to larger texture pe-
riods as probe size increases. This behavior is predicted
by the geometric model of probe and texture interaction,
developed for real textures and probes by Klatzky et
al. [28]. Intuitively, this is because larger probes require
larger element spacings before they can fully penetrate
between grating elements. The predicted location of the
psychophysical function maxima for the four probe sizes
used in the experiment can also be seen in Table 3. It
should be noted that the location of the fitted function
maximum represents an experimentally determined ap-
proximation of the DP. A DP is, by definition, calculated
from the geometry of the probe-texture interaction [28].

Although Table 3 shows that, regardless of the kind
of fit chosen for the roughness function data, the DP

increases with element spacing, it also reveals that both
second and third order fits tend to produce maxima
which are underestimated by the geometric model. A 1-
way ANOVA for the effects of probe size on DP showed
significance only for the third order fit and not the
second (Table 4). This may be due to the fact that the
actual data do not really appear to be well fit by a
polynomial function. Rather, a step function, such as a
sigmoidal logistic curve, seems a more likely fit.

Figure 7 shows an unconstrained nonlinear optimiza-
tion fit of a logistic curve of the form:

y = C +
A

1 + e−λ(x−B)
(2)

to the averaged and normalized roughness perception
data. The sums of squared errors are very low (0.013,
0.004, 0.004 and 0.002 for probe sizes of 0.25, 0.5, 1.0
and 1.5 mm respectively), and the function appears to
fit the shape of the data well. The point at which the
logistic curve nears its maximum could be considered
the point of maximum roughness or the equivalent of
the DP. Arbitrarily choosing 80% of a logistic curve’s
y-axis range as a measure of the DP, it can be seen
that for a logistic fit, the DP also increases with element
spacing (Table 3). The DP’s from the logistic curve are
still generally larger than the predicted values.

( )a

v 0 v 0 v 0>

DPerr

( )b ( )c

Fig. 8. Drop point (DP) error explained by probe velocity
and geometric model: in (a) and (b) when velocity is 0, DP is
determined only by geometry; in (c) with velocity greater than 0,
DP is determined by probe velocity and geometry.

The underestimation of the DP by the geometric model
may be due to its underlying quasi-static assumption.
The model assumes that depth of penetration is only
related to probe position relative to texture geometry;
dynamic effects are ignored (Figs. 8a and b). In fact, the
probe has some velocity that will carry it forward as it
falls to the floor between elements. Element separation
must therefore be slightly larger than that predicted
by geometry alone, in order for a moving probe to
reach the floor without contacting the next element’s
leading edge, as seen in Fig. 8c. A subject’s hand and
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Rad. 2nd Ord. Curv. Pred. Max [mm] 2nd Ord. Max [mm] 3rd Ord. Max [mm] Logis. Max [mm]
0.25 mm -1.65 1.31 3.15 3.00 1.58
0.50 mm -1.77 1.56 3.79 3.79 1.84
1.0 mm -0.85 2.06 7.75 4.43 2.47
1.5 mm 0.077 2.56 N/A 5.30 3.39

TABLE 3
The TGT period at which maximum roughness occurs, based on 2nd and 3rd order polynomial curves fitted to roughness

estimates averaged across subjects as well as the height of a fitted logistic curve (80% of max-min). Curvature of the 2nd order
fitted curve (on a log-log plot) and the period of maximum roughness predicted by the geometric model are also shown.

Factor DOF F p-value
Curvature 3/92 23.47 < 0.0001

2nd Order Maxima 3/92 0.52 > 0.05
3rd Order Maxima 3/92 34.26 < 0.0001

TABLE 4
Significance of probe size effects with TGTs, determined using a 1-way ANOVA on curvature and maxima of a 2nd and 3rd order

fit to subject roughness estimates.

the manipulandum are subject to gravity resulting in
a downward acceleration, g. An approximate idea of
the underestimation in DP, DPerr, resulting from the
model’s quasi-static assumption, can thus be calculated
from element height, elh, and the planar velocity, vxy , of
the probe.

DPerr = vxy

√
2elh
g

. (3)

Mean planar velocity (MPV) over all subjects, trials
and probe sizes was determined from position record-
ings made directly from the MLHD and was found to
be consistent with velocities used in real-texture studies
[6], [28], [34] with small inter-subject variability. Using
Equation 3 and the measured MPV value of 51.08± 0.29
mm/sec, a DPerr of 0.47 mm was found. This value
approaches the average measured DPerr of 0.45 mm
for the logistic fit to simulated TGTs and is close to
the 0.24 mm average DPerr found with real dithered
textures [28]. In previous studies, the element spacing
corresponding to the DP has been found to increase
with probe velocity [27], [28]. This is consistent with the
predictions of our new velocity-revised geometric model.

5 DITHERED CONICAL TEXTURE EXPERI-
MENT

5.1 Experimental Design
The CS algorithm was used to generate a set of virtual
DCTs (see Fig. 9). The size and shape of the conical
texture elements was comparable to elements in Klatzky
et al.’s studies of real textures [28] and in our second
experiment. Electron micrographs of one of Klatzky et
al.’s physical texture plates are shown in Fig. 10.

The present conical elements had a height, Ch, of
0.42 mm and side angle, α, of 53◦. The base and top
radii (Rbase = 0.52 mm and Rtop = 0.23 mm) of
the DCT elements were equal to half of the base and

( )a ( )b

( )d( )c

Fig. 9. Graphical representation of the range of DCT models.
Textures have element spacings ranging from 0.5 to 5.5 mm and
probe radii ranging from 0.25 to 1.5 mm. (a) probe size = 1.5
mm, spacing = 0.5 mm, (b) probe size = 1.5 mm, spacing = 5.5
mm, (c) probe size = 0.25 mm, spacing = 0.5 mm, (d) probe size
= 0.25 mm, spacing = 5.5 mm.

( )a ( )b

Fig. 10. Electron micrographs of Klatzky et al.’s texture plates
[28]: (a) view of small area of plate, (b) view of single cone.

plateau widths, respectively, of the previously used TGT
elements. Element size was constant throughout the
experiment.

Elements were laid out on a grid at their desired
spacing and then randomly moved from their initial
location by up to 40 percent of their initial spacing
using zero-mean white noise. This resulted in a pseudo-
random distribution which maintained the original mean
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spacing. Eleven element spacings (0.5, 0.75, 1.0, 1.5, 2.0,
2.5, 3.0, 3.5, 4.0, 4.5 and 5.5 mm) were used. This range
was subject, at its upper end, to the limitations of the
MLHD workspace, and at its lower end, to the MLHD’s
position bandwidth.

Four spherical probes with radii of 0.25, 0.5, 1.0 and 1.5
mm, were used. The probe sizes selected had predicted
roughness maxima which fell within the selected range
of texture spacings.

Four probe radii and 11 spacings generated 44 probe-
spacing combinations, which were repeated 3 times each.
In order to allow comparison of absolute roughness
magnitude between probes, blocking was not used and
the 132 trials were presented in random order. This
should lead a subject to use the same internal roughness
scale throughout the experiment. A preliminary demon-
stration block of 24 trials was presented, consisting of
six representative texture spacings crossed with all four
probe sizes.

Seven female and seventeen male subjects, for a total
of 24 subjects, including 4 left-handed subjects, per-
formed the experiment. All subjects used the right hand.

5.2 Results

A quadratic fit approximates the mean roughness mag-
nitude estimation data well for the DCTs (see Fig. 11).
Individual roughness perception functions are shown in
Figure 12. They are quite variable but the majority of
them are well fit by a quadratic curve.
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Fig. 11. Second order fit to mean normalized roughness
estimates of DCTs explored with spherical probes.

The element spacings of maximum roughness pre-
dicted by Klatzky et al.’s geometric model [28], along
with the locations of the maxima of second and third or-
der fits to experimentally determined subjective rough-
ness, can be seen in Table 5. A 1-way ANOVA showed
a significant effect of probe radius on the maxima of
both the second and third order fit as well as the second
order curvature (see Table 6). The maximum subjective
roughness reported by subjects was not significantly
affected by probe radius.
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Fig. 12. Thin lines represent individual subject roughness
estimates for DCTs fitted with 2nd order curves in a log-log plot.
The second order fit to the mean data is plotted as a thick line.
Each plot represents a single probe radius as follows: (a) 0.25
mm, (b) 0.50 mm, (c) 1.0 mm, and (d) 1.5 mm.

5.3 Discussion

The psychophysical functions found by individual sub-
jects had fitted quadratics similar to those found by
Klatzky et al. using real DCTs and spherical probes [28].
They bear little resemblance to the linear functions found
for virtual sinusoidal textures in this paper or previous
studies [4], [7], [9], [29]. Clearly, probe-texture geometry
plays an important role in determining the shape of
the psychophysical function for roughness. Increasing
probe radius increased the spacing at which subjects
reported maximum roughness, as predicted by the ge-
ometric model [28]. The underestimation of the point of
maximum roughness by the model, can be explained
once again with reference to the model’s quasi-static
nature (see Section 4.3). The average error (DPerr) is
+0.30 mm for second order maxima and +0.31 mm
for the third order maxima. Correcting the DP for a
mean planar velocity of 49.06± 3.34 mm/sec, and using
Equation 3, the velocity-corrected DPerr is +0.45 mm.
The DP’s for virtual DCTs are thus very close to the
revised geometric model’s predicted values.

The measured locations of virtual DCT DP’s are also
similar to those found for corresponding real textures.
Klatzky et al. found maxima of 1.70, 2.23 and 2.98 mm
for probes with radii of 0.5, 1.0, and 1.5 mm respectively
[28]. These values are corrected to reflect spacings taken
from element center to element center, as opposed to
the so-called HV spacing between element edges used
by Klatzky et al. This allows direct comparison to our
results, as seen in Figure 13. The mean difference be-
tween Klatzky et al.’s real roughness Ψ(I) maxima and
the geometric model’s predictions, is +0.24 mm. The
mean difference between Klatzky et al.’s real maxima
and the virtual roughness maxima of this experiment is
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Probe Radius [mm] 2nd Order Curv. Predicted Max. [mm] 2nd Order Max. [mm] 3rd Order Max [mm]
0.25 -1.59 1.31 1.69 1.35
0.50 -1.50 1.56 1.93 1.86
1.00 -1.23 2.06 2.28 2.57
1.50 -0.92 2.56 2.77 2.93

TABLE 5
Maxima of DCT roughness estimates based on 2nd and 3rd order fits in a log-log plot (antilog values shown). Curvature of the 2nd

order fit on a log-log plot of roughness versus spacing is shown. Predicted maxima from the geometric model are also shown.

−0.02 mm. The mean absolute difference is 0.16 mm. The
absolute curvature of Ψ(I) was found to steadily and sig-
nificantly decrease with probe size (Table 5). Curvature
is a measure of the sensitivity of roughness perception
to changes in spacing. Larger absolute curvatures imply
large changes in subjective roughness occur for a fixed
range of spacings. Thus, as probe size increases sensitiv-
ity of subjective roughness to element spacing decreases.
The reasons for this effect may be related to the smoother
path followed by the larger spherical probes over the
texture elements. Real DCTs have not been found to
demonstrate this monotonic trend, although absolute
curvature for larger probes (1.5 mm radius, curvature
=1.08) has been found to be smaller than curvature
for smaller ones (0.5mm radius, curvature=1.31) [28].
The average absolute difference between real (deter-
mined from Klatzky et al.’s HV data) and virtual texture
Ψ(I) curvatures is 0.26. The results of our experiment
thus demonstrate that near equivalence between virtual
and real roughness perception can be achieved using
a MLHD and an algorithm which accounts for probe-
texture geometric interaction.

6 GENERAL DISCUSSION

One of the motivating factors for this study was the
previous finding of substantial differences in roughness
perception for virtual vs. real textures [4], [7], [9]. Ko-
rnbrot et al. found that the psychophysical function for
virtual texture roughness, Ψ(I), was linear and varied
substantially between subjects [4]. They hypothesized
that the analytic combination of highly variable subject
responses, with subjects having both negatively and
positively sloped Ψ(I)s, produced the inverted “U”-
shaped function seen by Klatzky et al. in studies of real
texture [28]. Noting that Kornbrot’s group used a virtual

Factor DOF F p-value
Curvature 3/92 3.06 < 0.05

Maximum Roughness 3/92 0.21 > 0.05
2nd Order Maxima 3/92 25.39 < 0.0001
3rd Order Maxima 3/92 22.61 < 0.0001

TABLE 6
Significance of probe size for DCTs, determined with a 1-way
ANOVA on curvature, maximum roughness (curve height) and

maxima of 2nd and 3rd order fits to roughness estimates.
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Fig. 13. Comparison of the curvature and maxima location
(DPs) of the psychophysical function for roughness (Ψ(I)) for
real and virtual spherical probes on DCTs. Real data are taken
from Klatzky et al. [28].

point-probe on SGTs for their experiments while Klatzky
et al.’s studies used a spherical probe on DCTs, we
hypothesized that the discrepancies are related to probe-
texture geometry, rather than some inherent difference
between virtual and real textures or in data analysis.

Our first experiment explored the use of a point-probe
on SGTs using the MLHD in a manner similar to Korn-
brot et al.’s studies [4]. This provided a baseline against
which to compare previous studies of virtual texture.
We found the psychophysical roughness function for
a point-probe on SGTs to be neither linear nor “U”-
shaped. Instead it consisted of a long initial plateau of
high roughness, followed by a linear decline. The slope
of the declining portion was -0.82, virtually identical to
that found by Kornbrot et al. While we observed some
variation between subjects, the standard error of the
function’s slope was only 0.13. It seems clear that, for
a virtual point-probe on SGTs, a linear Ψ(I) is produced
for large element spacings.

It should be noted that the position bandwidth and
maximum compliance of the haptic device used to gener-
ate textures may affect these results. Since the MLHD has
a position bandwidth of approximately 120 Hz, a probe
speed of 30-60 mm/sec, which is typical of the subjects in
our experiments, will significantly attenuate the motion
of the probe for spacings smaller than 0.2 mm. For these
speeds, the PHANToMTM device, used by Kornbrot’s
group, with its position bandwidth of 50 Hz [35], will
not produce reliable textures for spacings smaller than
approximately 0.5 mm. A second issue related to the



IEEE TRANSACTIONS ON HAPTICS, VOL.4, NO. 2, APRIL-JUNE 2011 10

PHANToMTM is its maximum stiffness of approximately
2 N/mm. Such a low stiffness (high compliance) results
in a Ψ(I) which shows low magnitude estimates and is
nearly linear and highly variable [12]. This suggests that
the inter-subject variability seen by Kornbrot may reflect
hardware limitations.

The two initial experiments, SGT with point probe and
TGT with spherical probe, produced markedly differ-
ent psychophysical functions. In contrast to the plateau
and linear decrease found for the SGT, when a TGT
was explored with a spherical probe, the shape of the
psychophysical roughness function approximated a step
(see Figure 7). These differences reflect the nature of
the interaction between probe and surface, as follows.
When an SGT is explored with a point-probe, the probe
is able to fully traverse the SGT, passing through the full
amplitude of the sinusoid, regardless of spacing. Its ver-
tical motion is thus unaffected by element spacing. The
slope of the sinusoid decreases with increasing period,
however, and thus the rate of change of position and
force should decrease (for large unattenuated periods).
If the rate of change of position or force are the salient
physical properties of roughness perception, then, for
SGTs explored with a point-probe, roughness should
start near a maximum and decrease as period increases.
In contrast, when a TGT is explored with a spherical
probe, since the side angle of the trapezoid in the TGT
is constant, element spacing will not affect the rate of
change of probe position or force. As spacing increases,
however, elements are encountered less frequently. If the
time-averaged change in position or force underlies per-
ceived roughness, a decline from peak roughness could
be expected, its magnitude depending on the amount of
time or space used by the perceptual system to integrate
the input signal.

The TGT experiment also demonstrates that changing
probe size shifts the onset of maximum roughness to
larger element spacings. Whereas the quadratic rough-
ness function seen by Klatzky et al. for real textures
is not observed, the onset of maximum roughness for
TGTs can be considered to be equivalent to Klatzky
et al.’s DPs and is predicted by the earlier geometric
model with reasonable accuracy (see Table 3). The ge-
ometric model consistently underestimates the onset of
maximum roughness, however. This is likely due to its
quasistatic nature. A simple modification, which takes
into account the velocity of the probe tip across the
surface, improves consistency between the model and
the experimental DP data (see Figure 8). Whereas the
DPs, even with the revised model, still do not precisely
match experimental findings for TGTs, the trend of in-
creasing DP with increasing probe radius is significant
by statistical measurement.

In the third experiment, when the CS algorithm was
used to model the interaction of a spherical probe with
DCTs, the data matched judgments of comparable real
textures [28] to a high degree of accuracy. Nearly iden-
tical DPs were obtained at each probe radius, and the

curvatures of the Ψ(I)s were very similar. Data from
virtual and real textures also corresponded with respect
to the tendency for the DP to increase, and curvature
to decrease, with increasing probe size. The decrease in
Ψ(I) curvature seen with increased probe size can be
related to the path the probe follows as it traverses the
constraint surface. For spherical probes, the radius of the
arc of motion that occurs while crossing an element lip
is related to the radius of the probe itself. A larger probe
will follow a path with more gradual changes in z-axis
motion and forces, than will a smaller one (see Figure
14). If the physical property experienced as roughness
relates to the rate of change in position or force, the
maximum perceived roughness for larger probes may be
decreased (as seen in Table 5). More gradual changes in
motion and force also require larger element spacings to
induce significant changes in roughness. This effectively
lowers subjective sensitivity to changes in element spac-
ing, reducing the Ψ(I) curvature.

Differences in Ψ(I) between the TGTs and DCTs are
likely attributable to the regularity of the TGTs. When a
regular grating is crossed by a spherical probe, rough-
ness increases with increasing penetration depth, as pre-
dicted by the Klatzky et al. geometric model. Maximum
penetration produces maximum roughness at roughly
the predicted DP. The same factors govern roughness
for DCTs; however, once maximum penetration has oc-
curred, the amount of free space between DCT elements
increases much more rapidly than for TGTs. For DCTs,
therefore, the probe will encounter elements much less
frequently as element spacing increases. Thus roughness
diminishes more rapidly after reaching the maximum for
DCTs than it does for TGTs.

The studies reported here lead to the conclusion that
with careful simulation of the geometry of probe-texture
interaction using a high-fidelity haptic device, virtual
roughness perception is essentially equivalent to real
roughness perception. The shape of the psychophysi-
cal function for roughness clearly reflects probe-texture
geometry, rather than hardware capabilities or some
fundamental difference between virtual and real texture
perception. Further work on this project will be directed
at elucidating the physical variables that reflect the
probe-texture interaction and thereby give rise to the
percept of textural roughness.

APPENDIX A
CONSTRAINT SURFACE ALGORITHM

The constraint surface algorithm describes the motion
of a spherical probe tip across a set of elements. The
equations below apply to truncated cones but can be also
used for trapezoidal gratings by substituting grating top
and bottom widths for cone base and top radii.

As seen in Figure 14, each element has a base radius
Rbase, and a top radius Rtop. The sides of the cone rise
with angle α, to a circular plateau. The height of the
cone, Ch, is determined by these parameters as
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Fig. 14. (a) Large spherical probe moving over a smaller cone
where first contact occurs at the cone’s upper lip, (b) smaller
spherical probe moving over a larger cone where first contact
occurs below the cone’s upper lip.

Ch = (Rbase −Rtop) tan(α). (4)

The elements are situated on a smooth surface defined
by the (x, y)-plane. The path that a spherical probe
will take as it passes over a cone is dictated by the
geometry of the probe-element interaction. If a probe
of radius Rp travels around a convex corner that has
greater curvature than the sphere itself, it moves along
an arc with radius Rp. Otherwise, it moves a distance
Rp from the surface and parallel to it. The probe path
is therefore governed by a set of piece-wise continuous
functions. The inflection points between the functions
are determined by the radius of the probe and the shape
of the cone.

In determining the probe path, it is first necessary to
locate the probe with respect to the nearest cone element.
The center of the probe is mapped onto the HIP. The
cartesian distance in the (x, y)-plane, d, is found from
the center of the probe to the center of the nearest cone.
If the probe is farther than d1, the point of initial contact,
from any cone, the height of the HIP above the surface,
zdes, will simply be that of the probe radius itself. The
location of d1, and other points of inflection in the probe
path, are determined from the probe radius and cone
side angle and are defined as distances from the nearest
cone element center.

A spherical probe may either make first contact with
a cone at its upper edge as shown in Fig. 14a or at the
point along the cone’s leading edge where the tangent
to the sphere’s surface is equal to α as seen in Fig. 14b.
This critical height of the first contact, hcrit, is found as

hcrit = Rp(1− cos(α)), (5)

and is used to divide probe-cone contacts into two
cases. The first case (Fig. 14a), in which Ch ≤ hcrit, has
two probe path inflection points, d1 and d2, which are
found as:

d1 = Rtop +
√
Ch(2Rp − Ch), (6)

d2 = Rtop. (7)

In this case, the probe’s distance, d, from the center
of the nearest cone dictates its height, zdes, above the
(x, y)-plane as follows:

d ≥ d1 : zdes = Rp, (8)

d2 ≤ d < d1 : zdes = Ch +
√
R2

p − (d−Rtop)2, (9)

0 ≤ d < d2 : zdes = Ch +Rp. (10)

The second case, in which Ch ≥ hcrit (Fig. 14b), has
three probe path inflection points

d1 = Rbase +Rp sin(α)− hcrit cot(α), (11)

d2 = Rtop +Rp sin(α), (12)

d3 = Rtop. (13)

In this case, the probe’s height, zdes, above the x, y
plane is determined by d as:

d ≥ d1 : zdes = Rp, (14)

d2 ≤ d < d1 : zdes =
Rp + (Rbase − d) sin(α)

cos(α)
, (15)

d3 ≤ d < d2 : zdes = Ch +
√

R2
p − (d−Rtop)2, (16)

0 ≤ d < d3 : zdes = Ch +Rp. (17)
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