
Trajectory Planning and Control of an Underactuated Dynamically

Stable Single Spherical Wheeled Mobile Robot

Umashankar Nagarajan, George Kantor and Ralph L. Hollis

Abstract— The ballbot is a dynamically stable mobile robot
that moves on a single spherical wheel and is capable of omni-
directional movement. The ballbot is an underactuated system
with nonholonomic dynamic constraints. The authors propose
an offline trajectory planning algorithm that provides a class
of parametric trajectories to the unactuated joint in order to
reach desired static configurations of the system with regard to
the dynamic constraint. The parameters of the trajectories are
obtained using optimization techniques. A feedback controller
is proposed that ensures accurate trajectory tracking. The
trajectory planning algorithm and tracking controller are
validated experimentally. The authors also extend the offline
trajectory planning algorithm to a generalized case of motion
between non-static configurations.

I. INTRODUCTION

The ballbot, introduced in [1], is a dynamically stable

single spherical wheeled mobile robot capable of omnidirec-

tional movement. It is skinny and as tall as a normal human

being, making it more suitable for navigation and interaction

in human environments [2]. Details on control architecture

and capabilities of the ballbot can be found in [3]. The ballbot

is an underactuated system with dynamic constraints.

Fig. 1. The ballbot Balancing

Trajectory planning and control of underactuated mechan-

ical systems, systems with fewer control inputs than the

number of generalized coordinates, has attracted growing

attention over the years. The most important and interesting

feature of underactuated systems is the constraint on their

dynamics. A nonintegrable constraint is called nonholonomic
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[4] and they are classified as kinematic and dynamic con-

straints. The kinematic constraints are represented by first-

order differential equations, whereas the dynamic constraints

are represented by second-order differential equations. There

is a large body of literature on trajectory planning for non-

holonomic systems with kinematic constraints, ranging from

theoretical foundations [5] to practical implementations such

as multi-wheeled mobile vehicles [6], [7], [8]. Underactuated

systems with dynamic constraints have been approached

from the controls perspective (e.g., acrobot swing-up [12])

as well as from the planning perspective (e.g., airship path

planning [9]). There are also a number of numerical planning

approaches that can be applied to dynamic systems [10].

Rosas-Flores et al. describe approaches that are particu-

larly relevant to this paper in [14], [15]. In [14], the trajectory

planning problem of an underactuated planar 2R manip-

ulator is solved using offline planned trajectories, which

are constructed with smooth sinusoids. In [15], a class of

parametric trajectories is proposed for the actuated joint of

the 2R underactuated manipulator with zero gravity in order

to achieve desired configurations of the system.

In this paper, the authors propose a novel offline trajec-

tory planning algorithm that plans trajectories for the body

angle (unactuated) so as to move the ball (actuated) to a

desired position on the floor with regard to the dynamic

constraint. Traditionally, trajectories are planned for actuated

joints in order to move the unactuated joint to desired

position whereas, in this paper, trajectories are planned

for the unactuated joint so as to move the actuated joint

to desired position. This is because in the ballbot, the

underactuated dynamics dominates the system behavior and

hence trajectories planned for the body angle ensure better

tracking and control. A class of parametric trajectories is

presented for the body angle and the parameters of the

trajectories are selected using optimization techniques. A

feedback trajectory tracking controller is introduced that

ensures accurate trajectory tracking for the ball.

The paper is organized as follows: Section II discusses the

planar simplified ballbot model and section III shows that the

ballbot is a nonholonomic system with dynamic constraints.

Section IV describes the trajectory planning procedure for

motion between static configurations, which is extended to

a generalized case in section V. Section VI presents the

balancing controller and the feedback trajectory tracking

controller, while section VII shows the experimental results.

Finally, section VIII presents the conclusions and future

work.
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II. PLANAR SIMPLIFIED BALLBOT MODEL

The ballbot is modeled as a rigid cylinder on top of a rigid

sphere. A planar model of the ballbot is used for developing

the trajectory planner. The following assumptions are made

in the model: (i) there is no slip between the spherical wheel

and the floor, (ii) the motion in the median sagital plane and

median coronal plane is decoupled, and (iii) the equations

of motion in these two planes are identical. With these

assumptions, we can design two decoupled, independent

planar trajectory planners for the 3D system.

mbody

r

l

Fig. 2. Planar Simplified Ballbot Model

Euler-Lagrange equations are used to derive the dynamic

equations of motion of the planar ballbot model1 shown

in Fig. 2. The angle between the body and the vertical is

referred as the body angle φ , while the angle between the ball

and the body is referred as the ball angle θ . The equations of

motion for the simplified planar ballbot model can be written

in matrix form as follows:

M(q)q̈+C(q, q̇)+G(q)+D(q̇) =

[

τ
0

]

, (1)

where q = [θ ,φ ]T is the generalized coordinate vector, M(q)
is the mass/inertia matrix, C(q, q̇) is the vector of coriolis and

centrifugal forces, G(q) is the vector of gravitational forces,

D(q̇) is the frictional torque vector and τ is the torque applied

between the ball and the body in the direction normal to the

plane. The expressions for the above mentioned terms are

given below:

M(q) =

[

α α +β cosφ
α +β cosφ α + γ +2β cosφ

]

, (2)

C(q, q̇) =

[

−β sinφφ̇ 2

−β sinφφ̇ 2

]

, (3)

G(q) =

[

0

−
βgsinφ

r

]

, (4)

D(q̇) =

[

Dcsgn(θ̇)+Dvθ̇
0

]

, (5)

1It is to be noted that the model described below uses a coordinate scheme
different from the one described in [2].

where α = Iball +(mball +mbody)r
2, β = mbodyrℓ, γ = Ibody +

mbodyℓ
2, Dc and Dv are the coulomb friction and the viscous

damping friction terms respectively. Please refer to Table I

for the other symbols. Eq. 1 can be re-written as follows:
[

Ma

Mu

][

q̈a

q̈u

]

+

[

Ca

Cu

]

+

[

Ga

Gu

]

+

[

Da

0

]

=

[

τ
0

]

(6)

where qa = θ represents the actuated joint and qu = φ
represents the unactuated joint. The dynamic equation cor-

responding to the unactuated joint is:

Mu(q)q̈+Cu(q, q̇)+Gu(q) = 0. (7)

III. INTEGRABILITY OF CONSTRAINTS

The ballbot is an underactuated robot as there is no direct

actuation on the body angle φ . Eq. 7 may be interpreted

as a constraint involving generalized coordinates as well as

their first and second-order time derivatives. It is important

to determine if this constraint is integrable or not. If it is

completely integrable, we would obtain an algebraic relation

between the generalized coordinates. The conditions for

partial and complete integrability are given below.

With reference to [16], the constraint in Eq. 7 is:

1) partially integrable if and only if:

a) the gravitational torque Gu is constant;

b) the unactuated joint variables φ do not appear in

the inertia matrix M(q).

2) completely integrable (holonomic) if and only if:

a) it is partially integrable;

b) the distribution ∆ defined by (Mu(q)q̇ = 0) is

involutive.

From Eq. 2 and Eq. 4, it is clear that the gravitational

torque Gu(q) is not a constant and the unactuated joint

variables φ do appear in the inertia matrix M(q). This implies

that the constraint shown in Eq. 7 is not partially integrable

which makes it not completely integrable. Therefore, we

conclude that the unactuated joint dynamics form a nonholo-

nomic dynamic constraint. This dynamic constraint plays an

important role in planning trajectories that can make the

underactuated system navigate to desired configurations.

IV. TRAJECTORY PLANNING BETWEEN STATIC

CONFIGURATIONS

Trajectory planning for motion from an initial configura-

tion to a desired final configuration is an important feature of

any mobile robot. For dynamically stable mobile robots like

the ballbot, the trajectory planning problem is complicated by

the fact that the planned trajectory must respect the dynamic

constraint. The dynamic constraint given by Eq. 7 can be

re-written of the form:

θ̈ = f (φ , φ̇ , φ̈)

=
βg/r sinφ +β sinφφ̇ 2

− (α + γ +2β cosφ)φ̈

α +β cosφ
. (8)

This indicates that in order to stick to a constant non-

zero desired body angle φd (φ̇d = 0 and φ̈d = 0), the ball
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has to accelerate. This also indicates that it is possible to

generate a body angle trajectory that will move the ball to

a desired position. Given the desired initial and final ball

angular positions θd0 and θd f , if θ(t0) = θd0, then one can

find t f ∈ ℜ and φ(t) for t∈ [t0, t f ] such that the resulting

trajectory satisfies θ(t f ) = θd f . It is to be noted that θd0 and

θd f correspond to the motion on the floor.

A class of parametric trajectories is proposed for the

body angle to make the ballbot move from a static initial

configuration to a static final configuration. The parameters

of the proposed trajectories depend on the initial and final

desired configurations. It is to be noted that for the ballbot to

move forward and come to rest, the body has to lean forward

first and then lean back to stop (Fig. 3(a)). With this physical

understanding of system behavior, we follow [15] to propose

the following trajectory for the body angle:

φp(t) = φpa1
sech(k

2t − tm − t0

tm − t0
)+φpa2

sech(k
2t − t f − tm

t f − tm
),

(9)

where φpa1
, φpa2

are the amplitudes of the hyperbolic secant

functions, tm = (t0 + t f )/2 and k = 9 is a constant scalar. The

constant scalar k determines the width of the peak given

the other parameters. Given φpa1
, φpa2

, t0 and t f , a smaller k

value results in a wider peak, whereas, a larger k value results

in a narrower peak. It is to be noted that in [15], the above

mentioned parametric trajectory was used for the actuated

joint and here, the authors use the same for the unactuated

joint. The trajectory φp(t) depends on three parameters φpa1
,

φpa2
and t f .

The three parameters, φpa1
, φpa2

and t f , are to be de-

termined such that when the ballbot tracks the body angle

trajectory φp(t), the ball comes to rest at the desired final

position θd f . Trajectory optimization is used to select suitable

parameter values. The trajectory planning problem can be

formulated into an optimization problem as follows: The

path connecting the initial configuration (θ(t0),φ(t0)) =
(θd0,0) with (θ̇(t0), φ̇(t0)) = (0,0) to the final configuration

(θ(t f ),φ(t f )) = (θd f ,0) with (θ̇(t f ), φ̇(t f )) = (0,0) can be

determined by choosing the parameters φpa1
, φpa2

and t f

such that the objective function:

J = w1(θ(t f )−θd f )
2 +w2θ̇ 2(t f )+

∫ t f

0
(w3t +w4τ2)dt (10)

has a minimum subject to the dynamic constraint from Eq.

8:

(α +β cosφp)θ̈ +(α + γ +2β cosφp)φ̈p

−β sinφpφ̇ 2
p −

βgsinφp

r
= 0. (11)

The constraints θ(t f ) = θd f and θ̇(t f ) = 0, which ensure that

the ball has reached its final static position, are enforced by

choosing large weights w1 and w2 in the objective function

(Eq. 10). The weights w3 and w4 are chosen to weight the

relative cost between time and control effort. The constraints

φ(t f ) = 0 and φ̇(t f ) = 0 are not explicitly mentioned in Eq.

11 as they are automatically satisfied when φ tracks φp(t). It

is possible to fix t f and just determine the parameters φpa1

and φpa2
. Since we wish to optimize over time and control

effort, the final time t f is also used as a free parameter to be

optimized for.

We use the Nelder-Mead simplex method [17] for tra-

jectory optimization. The optimization procedure starts with

given initial parameters for φpa1
, φpa2

and t f , computes the

objective function J (Eq. 10) and checks for a minimum.

If the objective function is not a minimum, the algorithm

proceeds to determine new parameters and loops until it finds

a minimum. The planned trajectory for the body angle φp(t)
is obtained by using the parameters from optimization in

Eq. 9. The planned trajectory for the ball angle θp(t) can

be determined by solving the dynamic constraint (Eq. 11)

by using φp(t), φ̇p(t) and φ̈p(t). It is to be noted that the

parameters obtained by the optimization process depend on

the initial parameter values.

(a) Static-Static case (b) Generalized case

Fig. 3. Proposed parametric trajectories for body angle

V. GENERALIZED TRAJECTORY PLANNING

A trajectory planning algorithm that moves the ballbot

from an initial static configuration to a desired final static

configuration was presented in Section IV. In a more general

case, the ballbot should be capable of moving between

non-static configurations allowing piecewise continuous tra-

jectories to be planned. The trajectory planning algorithm

presented in Section IV can be extended to a generalized

case. Given the desired initial and final ball angular positions

and velocities (θd0, θd f , θ̇d0 and θ̇d f ) and the initial body

angular position and velocity (φ0 and φ̇0), if θ(t0) = θd0,

θ̇(t0) = θ̇d0, φ(t0) = φ0 and φ̇(t0) = φ̇0, then one can find

φ f , φ̇ f , t f ∈ ℜ and φ(t) for t∈ [t0, t f ] such that the resulting

trajectory satisfies θ(t f ) = θd f , θ̇(t f ) = θ̇d f , φ(t f ) = φ f and

φ̇(t f ) = φ̇ f . The new proposed parametric trajectory for the

body angle (Eq. 12), as shown in Fig. 3(b), is written as

the sum of the hyperbolic secant trajectories (Eq. 9) and a

smooth function, e.g., a cubic spline trajectory.

φp(t) = φpa1
sech(k

2t − tm − t0

tm − t0
)+φpa2

sech(k
2t − t f − tm

t f − tm
)

+ a0 +a1t +a2t2 +a3t3, (12)

where φpa1
, φpa2

, tm, k are the same as in Eq. 9, while

a0,a1,a2 and a3 are the cubic spline coefficients determined

using t0, t f ,φ0, φ̇0,φ f and φ̇ f . Here, the body angle trajectory

φp(t) depends on five parameters namely, φpa1
, φpa2

, t f , φ f

and φ̇ f . These five parameters in turn depend on the initial

and desired final ball angular positions (θd0,θd f ) and ball

angular velocities (θ̇d0, θ̇d f ).
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For the 3D ballbot system, trajectory planning in the two

planes cannot be completely de-coupled. In order to reach

a desired configuration on the floor, the time t f must be

the same for body angle trajectories in both the planes. So,

the generalized trajectory planner implements the trajectory

planning algorithm described above for both the planes

(say, XZ and YZ planes) simultaneously with a total of

nine parameters, namely, φpax1
, φpax2

, φx f , φ̇x f , φpay1
, φpay2

,

φy f , φ̇y f and t f . The objective function for the trajectory

optimization is chosen to be:

J = (Θ(t f )−Θd f )
TW1(Θ(t f )−Θd f )

+ (Θ̇(t f )− Θ̇ f )
TW2(Θ̇(t f )− Θ̇ f )

+
∫ t f

0
(w3t +QTW4Q)dt, (13)

where Θ = [θx,θy]
T and Q = [τx,τy]

T . The weight w3 and the

elements of the weight matrices W1, W2 and W4 are chosen

as in Eq. 10. The trajectory optimization procedure finds

appropriate values for the nine parameters mentioned above

such that the objective function J in Eq. 13 has a minimum

subject to the constraint in Eq. 11 for trajectories in both the

planes. In the special case of reaching a static desired final

configuration, the generalized trajectory planner forces φx f ,

φ̇x f , φy f and φ̇y f to be zero and optimizes over the remaining

five parameters.

Any arbitrary desired motion of the ballbot on the floor can

be characteristized by a collection of desired configurations

and the trajectory planning procedure presented can be used

to obtain the trajectories that move between the desired

configurations.

VI. TRAJECTORY TRACKING CONTROL

As per the planar simplified ballbot model (Eq. 1), given

φp(t) and θp(t), the input torque required to track the

trajectories is given by the dynamic equation corresponding

to the actuated joint:

τ = Ma(qp)q̈p +Ca(qp, q̇p)+Ga(qp)+Da(q̇p), (14)

where qp = [θp,φp]
T . The open loop control input obtained

in Eq. 14 fails on the real robot due to modeling errors,

nonlinear friction effects and perturbations. The ballbot has

high static friction and unmodeled higher order modes that

make the planar simplified model unusable for model based

control. So, the authors resort to other control techniques that

help track the planned trajectories.

A. Balancing Controller

The balancing controller for the 3D ballbot system is

designed as two independent controllers operating one in

each of the vertical planes. The authors draw inspiration

from Zero Moment Point (ZMP) based controllers [18] for

humanoid robots to design the balancing controller for the

ballbot. The balancing controller shown in Fig. 4 attempts at

moving the center of the ball to a point directly below the

center of mass of the body. The projection of the center of

mass of the body on the horizontal plane passing through

the center of the ball is given by ℓsinφ . The center of

mass position of the body, ℓ, was determined experimentally

(Table I). The controller designed is a Proportional-Integral-

Derivative (PID) controller that feeds back the body angle

φ . The controller gains were experimentally tuned.

Fig. 4. Balancing Controller

The balancing controller takes the desired body angle as

input, which is zero in a pure balancing case and tries to

balance about that angle. One can feed in desired angles

to the balancing controller to move the ballbot around.

The planned body angle trajectory φp can be fed into the

balancing controller which tries to track it. This results in

a feedforward trajectory tracking operation as the ball angle

θ is not fed back to the controller. The balancing controller

eliminates the model uncertainities and performs what the

feedforward torque in (Eq. 14) would do if our model was

a good representation of the real system.

Fig. 5. Trajectory Tracking Feedback Controller

B. Feedback Trajectory Tracking Controller

A feedforward trajectory tracking operation may not al-

low the system to reach the desired configuration due to

changes in floor conditions, errors in modeling, nonzero ini-

tial conditions and other perturbations. A feedback trajectory

tracking controller must be designed to guarantee accurate

trajectory tracking for the system. The feedback controller

is designed as a wrapper around the balancing controller

and its control system block diagram is shown in Fig. 5.

The ball angle is regulated about the ball trajectory θp(t)
obtained by solving the dynamic constraint (Eq. 11). The

feedback trajectory tracking controller is a PID controller

that feeds back ball angle θ and outputs a body angle

compensation φc depending on whether the ball position

is overshooting or falling short from its planned trajectory

θp(t). The gains of the PID controller were experimentally

tuned. The body angle compensation is added to the planned

trajectory to form the desired trajectory φd(t) (Eq. 15), which

the inner balancing PID loop tries to track. The feedback

compensation is saturated to avoid large values which might

drive the system unstable.

φd(t) = φp(t)+φc(t). (15)
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TABLE I

SYSTEM PARAMETERS

Symbol Parameter Value (unit)

mbody Mass of the body 51.663 (kg)

mball Mass of the ball 2.437 (kg)

r Radius of the ball 0.1058 (m)

ℓ Center of Mass of the body 0.69 (m)

Ibody Moment of Inertia of the body 37.1873 (kgm2)

Iball Moment of Inertia of the ball 0.0174 (kgm2)

Dc Coulomb Friction Torque 4.39 (Nm)

Dv Viscous Damping Friction Coefficient 0.1772 (Nm/rad/s)

0 10 20
−0.5

0

0.5

Time (s)

A
n
g
le

 (
d
e
g
)

 

 

(a) Body Angle

0 5 10 15 20 25

0

5

10

Time (s)

A
n
g
le

 (
ra

d
)

 

 

(b) Ball Angle

Fig. 6. Planned trajectories for motion between static configurations

VII. RESULTS

A. Experimental Results for Motion between Static Config-

urations

The trajectory planning and control described in Sections

IV & VI-B were implemented on the ballbot. The system

parameters like moment of inertia and center of mass were

experimentally determined and are tabulated in Table I.

The dynamic constraint in Eq. 7 was numerically solved

using ode45 in MATLAB and the Nelder-Mead simplex

method was implemented using f minsearch in MATLAB.

It is important to note that the parameters estimated from

the trajectory planning algorithm with recursive optimization

depend on the algorithm’s initial parameters.
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Fig. 7. Desired body angle trajectories using feedback compensation from
experiments on the ballbot

Suppose the objective is to move the ballbot one meter

from its starting zero position on the floor. This transforms

to a motion from an initial configuration (θ0,φ0) = (0 rad, 0

rad) to a final configuration (θ f ,φ f ) = (1/r, 0) = (9.45 rad,

0 rad). Starting with a initial parameter set of φpa1
= 0.35◦,

φpa2
= -0.35◦ and t f = 15 s, the parameters that minimize

the objective function in Eq. 10 are φpa1
= 0.4062◦, φpa2

=

-0.4087◦ and t f = 19.54 s. The planned body angle trajectory

and the ball angle trajectory obtained by solving the dynamic

constraint are shown in Fig. 6(a) and Fig. 6(b) respectively.
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Fig. 8. Experimental trajectory tracking for body angles

The planned trajectory for the body angle and the desired

trajectory for the ball angle are fed into both the planar

tracking controllers in order to make the ballbot move from

(0 m, 0 m) to (1 m, 1 m) on the floor plane (XY plane). The

body angle compensation output from the feedback controller

and the desired body angle trajectories (Eq. 15) for roll and

pitch angles are shown in Fig. 7(a) and Fig. 7(b) respectively.
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Fig. 9. Experimental trajectory tracking for ball angles

Fig. 8(a) and Fig. 8(b) show the balancing controller’s

effort to track the desired trajectories for roll and pitch

respectively. The seemingly growing instability in the body

angles is just an artifact of the close-up view we have on the

plot. The balancing controller is capable of balancing about

the origin for a long time as shown in [3]. The feedback

tracking controller’s effort at tracking the ball angle for the

X and Y directions are shown in Fig. 9(a) and Fig. 9(b)

respectively. The ballbot’s successful motion from (0 m, 0

m) to (1 m, 1 m) on the floor is shown in Fig. 10.
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Fig. 10. Experimental trajectory tracking on the floor

B. Initial Results for Generalized Trajectory Planning

The initial results of successful trajectory planning be-

tween non-static configurations are presented here. Suppose
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the objective is to move the ballbot on a circular arc from

(0 m, 0 m) to (1 m, 1 m) on the floor from an initial static

configuration to a final static configuration (Fig. 11(a)). The

trajectory planner would plan a straight line trajectory be-

tween the two configurations if there is no extra information.

So, in order to move on a curve, we give another desired non-

static configuration in the middle. These three configurations

fully characterize the circular arc motion splitting the motion

into two segments as shown in Fig. 11(a).
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Fig. 11. Desired and planned piecewise continuous motion on the floor

For the first segment, the ballbot moves from the ini-

tial configuration (θ0,φ0, θ̇0, φ̇0) to the middle configuration

(θm,φm, θ̇m, φ̇m) in both the planes. It is to be noted that φm

and φ̇m for the trajectory in both the planes is obtained from

trajectory optimization. For the second segment, the ballbot

moves from the middle configuration (θm,φm, θ̇m, φ̇m) to the

final configuration (θ f ,φ f , θ̇ f , φ̇ f ) in both the planes. In this

case, φ f and φ̇ f are forced to be zero in both the planes since

the desired configuration is static i.e. θ̇ f = 0.
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Fig. 12. Planned piecewise continuous trajectories

The planned trajectories are shown in Fig. 11(b), Fig. 12(a)

and Fig. 12(b). The planned trajectories have not yet been

tested on the real robot and hence the experimental results are

not provided. The authors believe that the controller shown

in Fig. 5 can be used to track the planned trajectories as

shown in Section VII-A.

VIII. CONCLUSIONS AND FUTURE WORK

The possibility of planning trajectories for the body angle

in order to move the ballbot to desired configurations has

been demonstrated and successful trajectory tracking be-

tween static configurations has been experimentally verified.

The Nelder-Mead method for optimization is crude and

prone to local minima. Hence, as part of future work, the au-

thors wish to explore other techniques to perform trajectory

optimization. For motion between static configurations in 3D,

the trajectory planning can be done in just a single plane (the

plane of motion) and rotation transformations can be used to

transform the motion to XZ and YZ planes. Attempts will be

made to generate trajectories for faster motion which would

result in larger body angles in shorter time. The authors will

further develop and experimentally verify the generalized

trajectory planning and tracking approach described in this

paper. This will allow us to generate a collection of useful

behaviors. Machine learning techniques such as policy search

and dynamic programming can also be used to find suitable

low-level behaviors. These behaviors can then be combined

to accomplish higher-level mobility tasks such as hallway

navigation and obstacle avoidance.
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