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Planning in High-dimensional Shape Space for a Single-wheale
Balancing Mobile Robot with Arms

Umashankar Nagarajan, Byungjun Kim and Ralph Hollis

Abstract— The ballbot with arms is an underactuated balanc-  robots, are independent of the position variables and #r th
ing mobile robot that moves on a single ball. Achieving desired palancing mobile robots, the overall dynamics is dominated
motions in position space is a challenging task for such systems by the shape dynamics. The strong coupling between the

due to their unstable zero dynamics. This paper presents a novel d . fth iti dsh iabl kes tracki
approach that uses the dynamic constraint equations to plan ynamics of the posilion and shape variables maxes tracking

shape trajectories, which when tracked will result in optimal  desired position space motions with zero shape change an
tracking of desired position trajectories. The ballbot with arms  impossible task. Any attempt to do so will result in jerky

has shape space of higher dimension than its position space motions or drive the system unstable.

and therefore, the procedure uses a user-defined weight matrix . . . . .

to choose betweenpthe infinite number of possible con%binations Given an accurate model,_a Va”?ty of npnlmear |nver§|on-
of shape trajectories to achieve a particular desired trajectory Pased approaches are available in nonlinear control ditera
in position space. Experimental results are shown on the real ture to approximately track desired position trajectofis
robot where different motions in position space are achieved [9]. Modeling uncertainties, unmodeled dynamics, nordine
by tracking motions of either the body lean angles, or the arm  friction effects and disturbances can make these techsique
angles or combinations of both, ineffective on real robots. For balancing mobile robote lik

. INTRODUCTION the ballbot, the uncertainties arise primarily from theuator

Balancing, dynamically stable mobile robots can be eﬁe(’me_chanisms and nonlinear frictio_n effects of the s_,oft ball
tive personal robots and are a welcome departure from th&@!ling on the floor. However, having a model provides us
statically stable counterparts. They can be tall enouglate h valuable_lnformanon _Ilke the_dynam|c constraints thatphel
eye-level interactions and can be narrow enough to naviga§ €xploit the dynamic coupling between the shape and the
cluttered human environments. They are also capable of saR@Sition configurations.
gentle physical interaction and have the dynamic capasilit ' [10], we presented a planning procedure for balancing
to move with speed and grace comparable to that of humarfgobile robots like the ballbot that plans shape trajecsorie
The last decade has seen growing interest in two-wheel¥flich when tracked will result in approximate tracking of
balancing robots ([1], [2], [3]); a lot of them inspired the desired position trajectories. However, this work tleal
by the Segway Robotic Mobility Platform [4]. Our grc,uponly with the case where there are an equal number of
introduced the ballbot [5], a balancing mobile robot thaposition and shape variables. The ballbot with arms has a
moves on a single ball. The single, spherical wheel enablé§ape space of higher dimension than its position space sinc
the robot to achieve omni-directional motion overcominghe arm configurations are also shape variables. This paper
the limitations associated with the kinematic constraofts €xtends the planning procedure presented in [10] to plan in
two-wheeled robots. Recently, other groups have also peBjgher dimensional shape space to achieve desired motions
exploring single-wheeled balancing robot designs [6], [] in position space and also presents experimental results on
the present work, we have added a pair of 2-DOF arms to tf@e real robot.
ballbot making it, as far as we know, the first omnidirectiona
single-wheeled balancing mobile robot having arms.

Balancing mobile robots, by virtue of underactuation, have
constraints on their dynamics that restrict the family efec-
tories their configurations can follow. These constraimts a
second-order nonholonomic constraints,, non-integrable
acceleration or dynamic constraints. The configuratiorcepa
of any dynamic system can be divided into position space
and shape space. Position variables describe the position o
the system in world coordinates, whereas shape variables
are those that affect the inertia matrix of the system. The
dynamics of most mechanical systems, especially mobile
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Il. THE BALLBOT WITH ARMS form as follows:

The ballbot [5] is a balancing mobile robot that moves on M(q)i+ C(q,d)i + G(q) = {r] 7 )
a single ball. It has a cylindrical body that is about 1.5 nh tal 0

and weighs about 55 kg. The ball is driven using an inversghere, 1/(¢) € R8*® is the mass/inertia matrixg(q, §) €
mouse-ball drive mechanism with four DC servomotors. ARsx$ s the matrix of Coriolis and centrifugal terms,

inertial measurement unit (IMU) provides the body leary; q) € R®*! is the vector of gravitational forces and
angles. A more detailed system description of the ballbot _— (76, Tays 7o, ]T € RO%! is the vector of generalized
without the arms is available in [11]. forces. The body configurations are unactuated, whereas
Recently, a pair of 2-DOF arms were added to the robghe rest of the configurations are actuated. Equation 1 shows
[Fig. 1(a)]. Each arm is an aluminium tube that is 0.457 Mnat the ballbot with arms is annderactuated systeii?2]
long and 0.89 mm thick with a changeable dummy weighbecause there are fewer independent control inputs tha the
(Up to 2 kg) at its end. The arm attaches to its drive Unﬁre Configuration variables.
through a shoulder structure shown in Fig. 2. The configuration variables that appear in the inertia ma-
trix are calledshape variablegq,), whereas the configuration
variables that do not appear in the inertia matrix are called
external/position variablegq,.). For the 3D ballbot model
with arms,q, = 6 and ¢, = [a;, o, ¢]7. Here, all position
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i é‘;r%ifs configurations are actuated, whereas shape configurations
Helical Spring have both actuated and unactuated variables. The matrices

in Eq. 1 are of the form:
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Each arm is actuated by a pair of series-elastic actuators, sorlds:s) - Coar (g ds) - Coolds: ds)

each of which consists of a custom designed helical spring 0

with a torsion coefficient of 16.37 Nm/rad, a brush DC motor | Ga,(gs)

with a torque of 0.12 Nm at 3000 RPM, a 91:1 planetary gear Gla)= Ga, (g5) |’ “)
train, and a 2000 CPR encoder. Each actuator connects with Gy(qs)

a pair of bevel gears of gear ratio 1:2 and a 1024 CPR optical
encoder is attached to the end of the bevel gear shaft. T

x1 i
differential with three miter gears combines the torquernfro : dThet elements of tth e.atbovEe magrlcgjlatr]e notthptrtiﬁented
each actuator. The entire drive unit is fixed to a deck on the'© @U€ 10 space constraints. Equatioassishow that the
ballbot body. ynamics of the system is independent of both position and

velocity of the position variables,e., (4, 6).

The last two equations of motion corresponding to the
unactuated shape variablesform the dynamic constraint
The ballbot with arms is modeled as a rigid cylinder on topquations These arsecond-order nonholonomic constraints

of a rigid sphere with a pair of massless arms having weightgs they are not even partially integrable [13]. The dynamic
at their ends. The model makes the following assumptiongpnstraint equations in Eq. 1 are given by

() there is no slip between the ball and the floor; angl ( . N

there is no yaw/spinning motion for either the ball or theMe6(4s)0 + Moa, (qs)6u + Moa, (qs)6r + Mg (qs)9

body or the armsi.e., they have two degrees of freedom  +Clyq,(¢s, ds)c + Coa, (Gs, Gs )& + Cos(qs, 4s)d

ere, eachV/;; € R?*2, eachC;; € R**? and each’; €

A. Dynamic Model

each. A p'lanar. version Qf the model along with the planar +Gy(qs) =0. (5)
configurations is shown in Fig. d)

There are eight configuration variables for the 3D ballbot I1l. PLANNING IN SHAPE SPACE
model with arms represented ly= [0, ay, o, @], Where, Our objective here is to use the dynamic constraint equa-

0= [Qm,éy}T are configurations of the bally, = [alz,aly]T tions to plan shape trajectories, which when tracked will
are configurations of the left army, = [a..,a,]7 are result in approximate tracking of desired position traject
configurations of the right arm, ang= [¢,,, ¢,]” are con- ries. Eq. 5 shows that non-zero shape changes can result
figurations of the body. The forced Euler-Lagrange equationin acceleration in position space. Such systems are called
of motion of the ballbot with arms can be written in matrixshape-accelerated underactuated balancing syst¢ho$.



The dynamic constraint equations help us understand tkere,

relationship between shape configurations and acceleratio R 0 0
in position space. Let's first discuss a simple case where the i 0 ' W, 0 | e RO*S, (10)
robot sticks to a constant, non-zero shape configuration. 0 0 W,
A constant, non-zero shape configuratipnwith ¢; = 0 - (K0 )-1
zén('j gstoT 0 reduces the dynamic constraints equations in K9 — (ng)—l € R6*2. (11)
q (K¢)_1

Myo(gs)f + Gy(qs) = 0. (6)
s0las) i Here, the matrice$Ky, )", (K3 )~' and (K3)~" are all

Since M,y is invertible in the neighborhood of the origin diagonal matrices and hence, the weight malt¥ixs chosen

[10], one gets such thatW,, + W,, + Wy = I, a2 x 2 identity matrix.
. The weight matrixiV allows the user to relatively weigh the
0 = —Myo(gs) 'Gylqs) contribution each group of shape variables make in achievin
= T'(qs). (7) the desired acceleration in position spdide For example,

the user can choose from either a pure body lean motion or
If the system tracks a constant shape configuration, tf@epure arm motion or any combination of the two.

nonlinear mafd”(¢s) € R?*% provides the constant acceler- In this paper, we do not use the conventional pseudo-
ation the system will achieve in position space. Equatiosn 7 inverse approach as the pseudo—inverseK@! will return
also valid for cases where the non-zero shape configuratiopgly a single set of shape configurations whereas, the
cancel each other’s effect to produce zero acceleration glecoupled inverse approach using the weight matfieffers
position space. However, the nonlinear mifgq,) is not more flexibility and allows us to explore the space of infinite
invertible as the shape space is of higher dimension than thessible shape configurations. This is particularly useful
position space. Therefore, given a desired constant accelhen certain physically meaningful behaviors are desired,
eration in position space, there is no unique constant shafes example, constrained arm motions for carrying objects,
configuration that will achieve it. In fact, there are an iitin no arm motion while moving between narrow wakgc.
number_of const_ant shape configurations that wiII_ achiev/g. Optimal Shape Trajectory Planner
the desired motion. Here, we present ways to find such

configurations. Jacobian linearization of Eq. 7 wgs.at ~ hen the desired acceleration in position space is a non-

constant, time-varying trajectorg'fd(t), the corresponding

s = 0 gives . : . : ;

1 g shape trajectorieg?(¢) will also be time-varying. The dy-
o0 or’ namic constraint equations in Eq. 5 can be re-written as:
0qs|, —o  Oqs|, _ . _ . .

0.0 00 6 = = Man(a) ™ (Moo (216 + My, (016 +
_ { ar’ or’ ar’ } .
= qs=0 dorr qs=0 o¢ qs=0 J\/‘[¢¢(QS)¢ + C¢al (QSv QS)dl + Cd)ar,» (QSv QS)dr +
g KO KO KO . 9
[ S ) Cop (s, 4s) + Gqs(qs))
= K. (8)

= F(stqs;ijs)- (12)

The matrix K, € RZZG IS ”2(1'[2 |nV%rt|bIe, zvxxlgerezgs S |n this paper, we extend the shape trajectory planner
cc;rlthltuent submatricek’,, € R, K(gr € R™, Ky € presented in [10] to plan in high dimensional shape space
R=*= are all invertible. The matrixic, and in tum, itS 5 achieve optimal tracking of desired position trajesri
constituent submatrices are functions of only the systergu(t)_ Inspired by Eq. 9, given a desired acceleration tra-
parameters, and hence are constant matrices. These ctons]-@aory in position Spacé)'d(t) and a weight matrixiV’,

submatrices quantitatively represent the contributionhea ;o propose to find a constant linear map such that the

group of shape variables have on the acceleration of trquanned shape trajectory
system in position spacé.c., K3 , K{ and K represent

the contribution the left arm angles, right arm angles and F(t) = WK (), (13)

body angles have on the acceleration of the ball respegtive|, han tracked will result in an acceleration trajectdhyt)

Therefore, their inverses let us derive shape configursitiony, o approximates the desired acceleration trajeo&id(y).

which when tracked will result in desired acceleration "]—lere,W and K, have the same structure as in Eq. 10 and

position space. However, the individual inverses assurae tI"Eq_ 11 respectively.

the other shape configurations are zero. o _ The shape trajectory planning procedure can now be
Therefore, given a desired constant acceleration in positi formylated as an optimization problem, where the elements

spacef’, the constant shape configurations that must ber i, are determined with the objective of minimizing
tracked to achievé? can be written as: )

o7 (t) — 6%(t)

(14)

)

. J =
¢ = WK, 9) /t )




where, 67(t) = T(WKgbd(t), WKy 0 (t), WKy 6" (t)). -0 [Batancing |
Any optimization algorithm that solves nonlinear least- ¢ i | Controller
squares problems can be uség, = K ensures optimality

for a constant desired acceleration trajectory, whereasjt

not necessarily ensure optimality for a gen&%) but will

act as a good initial guess for the optimization process.

The shape trajectory planning procedure presented above
talks only about tracking desired acceleration trajeesori
0°(t) but not desired position trajectorig#’(t). Desired
position trajectorieg?(t) can be tracked by tracking the cor-
responding acceleration trajectori@é(t) only if the system
starts at the correct initial conditionse., 67(0) = 6%(0) and
r(0) = 6%(0). When the initial conditions match, approx-
imate tracking of the desired acceleration trajectoriesilte
in approximate tracking of the desired position trajeesri the neighborhood around the origin where the linear propor-
tionality between shape change and ball acceleration iid.val
Since the ballbot’s body has a larger moment of inertia than

The shape planner assumes that there exists controlléis arm, there is a larger acceleration bound for the body
that can accurately track the planned shape trajector@s. Fangles than the arm angles.

Fhe 3D ballbot model with arms, the shape configuration _ Choosing Weight Matrices

include actuated arm configurations and unactuated body i ) )
configurations. We use the balancing controller described i 11€ Shape trajectory planner assumes that a valid weight
[11] to track the planned body angle trajectories. In order tMatrix W is chosen. The conditions that determine its
track the planned arm angle trajectories, we use the computélidity are as follows. Each element;; of the weight
torque method [14] that provides open-loop control value@atrix W must be non-negative,c., w;; > 0. The weight
and a PID position controller for closed-loop control. matrix W must be of the form shown in Eq. 10 and its

We can observe that the tracking of desired positioﬁonstltuent submatrices must sum t@ a 2 identity matrix,
trajectoriesd? (t) by tracking planned shape trajectoriggt) ¢ Woi + Wa, + Wy = I
is open-loop with no feedback on the position configurations 1€ Weight matrix can also be used to account for self-
This procedure cannot ensure approximate tracking when tf@llision constraints. lts elements can be chosen such that
system starts at wrong initial conditions. Moreover, whildn€ arm motions do not collide with the body. Let's consider

testing on real robots, there are more issues such as mgdelfi€ case of the ballbot achieving a lateral ball motion using
uncertainties, unmodeled dynamics, nonlinear frictidacté just the arms. Here, a single arm cannot produce the whole

and noise that will prevent good tracking of desired positioMtion as it will result in collision with the body. So, one

trajectories. To overcome these issues, we use a feedb&R) Must be used for the "acceleration-phase” and the other
position trajectory tracking controller, similar to the eon &M Must be used for the “deceleration-phase”. This can be

in [15], that adds compensation shape trajectorieg) achieved by gsing a Qiﬁerent weight matrix fqr each phase.
to the planned shape trajectorig8(t), thereby producing Such a case is experimentally demonstrated in Sec. IV-B.
the desired shape trajectorigé(t) that are tracked by the E. Real-Time Planning

balancing and arm controllers as shown in Fig. 3. For the results presented in Sec. IV, the optimization
tolerance values for both the residual norm and the paramete
values were set to< 1073. On a standard Intel Core-2
Duo processor, the optimization implementation in MAT-
LAB converges in< 9 seconds. A well optimized C/C++
implementation can provide the results an order of magaitud
faster, which allows real-time planning on the ballbot.

1
L 5] Balibor » 0
H with Arms » 4,

Arm |
a’-0 | Controller | T,

Tracking < C) ‘+ _ g
Controller '

Optimal Shape
Trajectory Planner

Fig. 3. Control Architecture

B. Control Architecture

C. Choosing Desired Position Trajectories

Since the planned shape trajectorig$t) depend on the
desired acceleration trajectoriéé(t), the shape trajectory
planner requires that the desired position trajectofi&s)
must be at least of differentiability clag®, i.e., the first two
derivatives exist and are continuous. However, it is prefer
to have #4(t) be of differentiability classC* so that the IV. EXPERIMENTAL RESULTS
planned shape trajectorig®(¢) and their first two derivatives ~ This section presents the experimental results of the ball-
(g2 (t), ¢*(¢)) that depend on them exist and are continuousot with arms achieving desired position space motionsgusin

The desired position trajectorie®! (1) must also satisfy the optimal shape trajectory planner and the control achit
acceleration bounds that depend on the shape variables ute®@ described in Sec. Ill. User-defined weight matrices are
to achieve these motions. For the results presented in $ec. bsed to choose between the body and the arm motions. For
the acceleration bounds are set to 1%vaed 0.082 m/Afor  all the results presented in this paper, the ballbot arms hav
using the body angles and arm angles respectively. Thesekg dummy weights at their ends. The companion video,
values correspond to & Sody lean and a 55arm angle “Shape Space Planning for Ballbot with Arms”, shows the
(for a 1 kg end mass) respectively. These bounds represdyatlbot with arms perform the motions presented here.
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A. Forward Ball Motion ball position tracking error while using just the arms. This

. is due to the relatively poor trajectory tracking performoan
traglfirne, \Ze dzrs?rse%ntsiraei Letsﬁ:z %faﬁhfn:t?(l)lr?ogfwghmarirzgf the arm controller as shown in Fig.t(which in turn is
9 o 9 : . due to some excessive backlash in the arm gears. We plan

the forward direction using three different shape mot|0nst.O improve this design in the future
() pure _body motion; #) pure arm m_otion; andifi) a 3) Body and Arm Motion:Here t.he body and the arm
combination of both 'b0(.jy. and arm T\Otlonsﬁ | ball motions equally share (50-50) the effort of tracking the de-

_1) Pure Body_ Motlon.F|g_ure 40) s OWS the rea b_a b(_)t sired ball motion as shown in Fig.®( Resulting trajectories
with arms tracking the desw_ed ball mofuon_by tracking ustor the body and the right arm are shown in Figb)6énd
the desired body angle trajectory, which is a sum of thg;, "g¢) respectively. A similar result was obtained for the

planned body angle trajectory given by the shape trajectopt am The compensation body and arm angles remained
planning procedure and the compensation trajectory Oma'nwithin +£0.06° and +5° respectively.

through feedback. The arms were maintained at zero angles
for this experiment. The experimental body angle trajgctorB. Lateral Ball Motion
along with its tracking error is shown in Fig. #3( The Here, we present the results of the ballbot with arms
planner’s effectiveness is demonstrated by the small corracking a desired straight line ball motion of 1 m in the
pensation body angles, which remained within.08°. lateral direction using just the arm motions. The resulting
2) Pure Arm Motion: The ball position tracking perfor- ball motion and the tracking error are shown in Figa)7(
mance while using just the arms to achieve the 2 m motion Bhe arms are moved sideways and the right arm is used
shown in Fig. 5¢). The left arm angle trajectory is shown in during the “acceleration-phase” to initiate the motion as
Fig. 5() and a similar result was obtained for the right armshown in Fig. 7§), whereas the left arm is used during the
The compensation arm angles remained withis®, while  “deceleration-phase” to bring the system to rest as shown in
the body angles were maintained withit9.05°. Compared Fig. 7(c). As discussed in Sec. IlI-D, two different weight
to the results in Fig. 4, Fig. 5@) shows that there is larger matrices were used for the two phases in order to avoid
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