
IEEE Int’l Conf. on Robotics and Automation (ICRA), May 14-18, 2012

Integrated Planning and Control for Graceful Navigation of
Shape-Accelerated Underactuated Balancing Mobile Robots

Umashankar Nagarajan, George Kantor and Ralph Hollis

Abstract— This paper presents controllers called motion
policies that achieve fast, graceful motions in small, collision-
free domains of the position space for balancing mobile robots
like the ballbot. The motion policies are designed such that
their valid compositions will produce overall graceful motions.
An automatic instantiation procedure deploys motion policies
on a 2D map of the environment to form a library and the
validity of their composition is given by a gracefully prepares
graph. Dijsktra’s algorithm is used to plan in the space of
these motion policies to achieve the desired navigation task.
A hybrid controller is used to switch between the motion
policies. The results of successful experimental testing of two
navigation tasks, namely, point-point and surveillance motions
on the ballbot platform are presented.

I. I NTRODUCTION

Personal mobile robots will soon be operating in human
environments, offering a variety of assistive technologies
that will augment our capabilities and enhance our lives.
Balancing mobile robots can be effective personal robots as
they can be tall enough for eye-level interaction and narrow
enough to navigate cluttered environments. They are also
dynamically capable of moving with speed and grace com-
parable to humans. This paper presents an integrated motion
planning and control procedure that enables balancing mobile
robots like the ballbot [1] to navigate human environments in
a graceful manner. The ballbot is an underactuated, human-
sized mobile robot that balances on a ball. Unlike its two-
wheeled counterparts [2], [3], the ballbot is omnidirectional.
Our early successes with the ballbot have encouraged many
other groups [4], [5] to explore such designs.

Motion planning and control for mobile robots have been
traditionally decoupled. A high-level motion planner plans
a collision-free path that achieves the overall navigation
goal and a low-level controller attempts to follow this path.
Traditionally, the motion planner has no knowledge of either
the system dynamics or the controller used to track the
planned motion and the controller has no knowledge of either
the environment constraints or the overall navigation goal.
These decoupled approaches can work well in kinematic
wheeled robots but will fail miserably in highly dynamic,
balancing mobile robots like the ballbot. Such approaches
result in sub-optimal, jerky motions and often drive the
system unstable. In order to achieve robust, collision-free
graceful motions, the motion planning and control for such
systems must be integrated.

U. Nagarajan, G. Kantor and R. Hollis are with The Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
umashankar@cmu.edu, kantor@ri.cmu.edu and
rhollis@cs.cmu.edu

The last decade has seen several approaches towards
integrating planning and control procedures for robotic sys-
tems. Burridgeet al. [6] introducedSequential Composition,
a controller composition technique that connects different
control policies and switches between them to generate a
globally convergent feedback policy. It was successfully
applied to a variety of systems [7], [8]. Conneret al. [9]
used sequential composition to achieve global navigation
tasks for convex-bodied wheeled mobile robots. The control
policies were deployed on a map of the environment and their
composability relationship was given by a directed graph
calledprepares graph. Graph search algorithms were used to
find a sequence of control policies to achieve the navigation
task. In our previous work [10], we extended this procedure
to balancing mobile robots like the ballbot.

Though the procedure presented in [10] was capable of
navigating an environment with obstacles, the resulting robot
motion was not graceful. This is primarily due to the discrete
switching between the control policies. The control policies
were not designed such that their composition results in
an overall graceful motion. In the present work, we define
graceful motion to be any feasible robot motion in which its
configuration variables’ velocity and acceleration trajectories
are continuous and bounded. Continuous and bounded accel-
eration trajectories exhibit low jerk, are visually appealing,
and result in smoothed actuator loads. Moreover, high jerk
trajectories can excite the resonant frequencies of the robot,
which can drive a balancing system unstable.

Frazzoliet al. [11] presentedManeuver Automata, which
used open-loop maneuvers and steady-state trim trajectories
as motion primitives, which consisted of feasible state and
control trajectories. They used RRT-like [12] algorithms for
motion planning in maneuver space and demonstrated ag-
gressive maneuvering capabilities of autonomous helicopters
in simulations [13]. Since coverage of the free space is
not the objective of the algorithm, it replans every time
the state exits the defined domain. Tedrakeet al. [14]
introducedLQR-treesalgorithm, which builds a sparse tree
of LQR-stabilized trajectories with verified stability regions
that probabilistically cover the controllable subset of the state
space. Though this algorithm can be applied to a variety of
nonlinear systems, it is computationally expensive and has
only been demonstrated on systems of dimension up to five.
The verification of the stability regions is the bottleneck in
its application to high dimensional systems.

Contributions: In this paper, we present an integrated
planning and control procedure that ensures overall graceful
navigation of balancing mobile robots like the ballbot. The



contributions of this paper are: (i) a design procedure for
gracefully composable control policies called themotion
policiesthat result in collision-free graceful motions in small
domains of position space (see Sec. III); (ii ) an automatic
instantiation procedure that generates a motion policy library
from a small collection of motion policies (see Sec. IV-A);
(iii ) the notion ofgracefully prepares relationship, which is a
restrictive definition on the prepares relationship [6], [9] (see
Sec. III-C); and (iv) the successful experimental testing on
the ballbot platform to perform two navigation tasks, namely,
point-point and surveillance motions along with handling
disturbances (see Sec. V).

II. T HE BALLBOT

In this work, we model the ballbot (Fig. 1(a)) as a
rigid cylinder on top of a rigid sphere with the following
assumptions: (i) there is no slip between the ball and the
floor, and (ii ) there is no yaw/spinning motion for both the
ball and the body,i.e., they have 2-DOF each. A planar
model with the planar configurations is shown in Fig. 1(b).

(a)

w

b

(b)

Fig. 1. (a) The ballbot balancing; (b) Planar ballbot model.

The configuration space of any dynamic system can be
divided intopositionandshapespace. The position variables
qx represent the position of the mobile robot in the world,
and the robot dynamics is invariant to transformations of
its position variables. However, the shape variablesqs affect
the inertia matrix of the system and dominate the system
dynamics. For the ballbot, the ball angles form the position
variables, i.e., qx = [θ x

w,θ
y
w]

T ∈ R
2×1, while the roll and

pitch angles of the body form the shape variables,i.e.,
qs = [θ x

b ,θ
y
b]

T ∈ R
2×1. The equations of motion of the 3D

ballbot model can be written as:

M(q)q̈+C(q, q̇)q̇+G(q) =

[

τ
0

]

, (1)

where,q= [qx,qs]
T ∈R

4×1, M(q) ∈R
4×4 is the mass/inertia

matrix,C(q, q̇)∈R
4×4 is the Coriolis and centrifugal matrix,

G(q) ∈ R
4×1 is the vector of gravitational forces andτ ∈

R
2×1 is the vector of actuator inputs. The last two equations

of motion in Eq. 1 form the dynamic constraint equations
and are of the form:

Θ(qs, q̇s, q̈s, q̈x) = 0. (2)

In shape-accelerated balancing mobile robots [15] like
the ballbot, any non-zero shape change generally results in

acceleration in position space. Although we are primarily
interested in the motions in position space for navigation
purposes, planning for appropriate motions in shape space
that result in desired motions in position space is the only
way to make balancing mobile robots move with speed and
grace. In [15], we presented an optimal shape trajectory
planner that uses the dynamic constraint equations (Eq. 2)
to optimally track desired position trajectories. This planning
procedure finds feasible state (position and shape) trajectories
that best approximate any desired position space motion.

III. M OTION POLICY DESIGN

This section presents the design of control policies called
motion policies for the ballbot using the optimal shape
trajectory planner [15] and the control architecture shown
in Fig. 2. Each motion policy consists of a reference state
trajectory called a motion primitive, a time-varying feedback
trajectory tracking controller and a time-varying domain that
is verified to be asymptotically convergent [10].

Shape-Accelerated
Underactuated

Balancing Systems

Position

Shape

Balancing
Controller

Motor
Input

Desired
Shape

+
-

Desired
Position

+

-
Tracking

Controller

Optimal Shape
Trajectory Planner

+

Planned
Shape

Compensation
Shape +

Fig. 2. The control architecture.

A. Motion Primitives

Motion primitives are elementary, feasible state trajecto-
ries that produce graceful motions in small domains of the
position space and they can be combined sequentially to
produce more complicated trajectories. In this work, these
trajectories are designed to be graceful,i.e., the position,
velocity and acceleration trajectories are continuous and
bounded. Moreover, they are feasible state trajectories and
hence satisfy the dynamic constraints of the system.

Following [11], we define two classes of motion primi-
tives: (i) Trim primitives and (ii ) Maneuvers. Trim primi-
tives are motion primitives that correspond to steady-state
conditions and they can be arbitrarily trimmed (cut),i.e., the
time duration of the trajectory can be arbitrarily chosen. In
this work, we restrict trim primitives to constant positionor
velocity trajectories in position space with zero shape change.
Maneuvers are motion primitives that start and end at steady-
state conditions given by the trim primitives. Unlike trim
primitives, maneuvers have fixed time duration and non-zero
shape change. There is no restriction on how complicated
the maneuver motion can be, for example, a maneuver can
result in aS-curveor U-turn motion in position space. In
[11], the motion primitives consisted of both state and control
trajectories, whereas, in this paper, the motion primitives
consist only of feasible state trajectories.

In this work, we define a motion primitive setΣ(d) as a
collection of motion primitives, each of which produces a



net ∆x and∆y motion in position space such that∆x and∆y
are integral multiples of the distance parameterd. Figure 3(a)
shows position space motions of some example motion prim-
itives from a motion primitive set with the distance parameter
d= 0.5 m. Here, the desired position trajectories were chosen
to be nonic polynomials. The feasible shape and position
trajectories that best achieve these desired position space
motions were obtained using the optimal shape trajectory
planner described in [15], [16].

The motion primitives presented in Fig. 3(a) may strike
a strong resemblance to the state lattices [17] used by the
motion planners in unmanned ground vehicles. The state
lattices represent feasible paths and the lattice plannersplan
in the space of these paths, whereas, in this paper, the motion
planner plans in the space of motion policies, which are
controllers designed around motion primitives as will be
described in the following sections.

Y
(m

)

X (m)
0 0.5 1

0

0.5

1

(a)

Y
(m

)

X (m)

D
′

S

D

G

0 0.5 1

0

0.5

1

(b)

Fig. 3. (a) Position space motions of example motion primitives with
d = 0.5 m; (b) XY projection of a motion policy domain.

B. Motion Policies

Each motion policyΦi consists of a motion primitiveσi(t),
a time-varying feedback tracking control lawφi(t) and a
time-varying domainDi(t). The motion policy domainsD(t)
are defined as geometric domains in 4D position state space,
i.e.,(x,y, ẋ, ẏ), similar to the ones in [10]. The motion policies
use the control architecture in Fig. 2 that exploits the strong
coupling between the shape and position dynamics to achieve
the desired position space motions. The effectiveness of this
control architecture has been experimentally demonstrated
on the ballbot in [18], [16]. Since the motion policy control
architecture achieves motions in position space by controlling
the shape space motions, we restrict the policy domain
definitions to 4D position state space.

In this paper, we define these time-varying domainsD(t)
as 4D hyper-ellipsoids centered around the time-varying
desired position states of the motion primitives. Each time-
varying domainD(t) has a start domainS=D(0) and a goal
domainG= D(t f ). Moreover, each domainD(t) has another
domainD′(t) defined such thatD(t)⊂ D′(t) ∀t ∈ [0, t f ] and
any state trajectory starting inS will remain in D′(t) until it
reachesG ∀t ∈ [0, t f ]. The overall domains for each motion

policy are given byD=

t f
⋃

t=0

D(t) andD′ =

t f
⋃

t=0

D′(t). An XY

projection of an example motion policy domain is shown in
Fig. 3(b). The geometric domain definitions make it easier
to verify the validity of a motion policy for a position state.

The verification of these domains is done using the 3D
dynamic model of the ballbot system. Various system iden-
tification experiments were conducted [19] on the ballbot
to estimate the system parameters such that the dynamics
of the model better match the real robot dynamics. The
dynamic model under the action of the control architecture
in Fig. 2 was simulated from finitely many states on the
surface of the start domainSi of each motion policyΦi and
was verified to remain inside the domainD′

i(t) ∀t ∈ [0, t f ]
until it reaches the goal domainGi . Moreover, the resulting
shape space motions were also verified to be in the domain
of the balancing controller, which tracks them.

In this paper, we define a motion policy paletteΠ(Σ) to
be a collection of unique motion policies whose constituent
motion primitives belong to the motion primitive setΣ(d)
with the distance parameterd.

C. Gracefully Prepares Relationship

In this section, we define thegracefully prepares relation-
shipbetween motion policies that ensures graceful switching
between them. A motion policyΦ1 is said to gracefully
prepareΦ2, i.e., Φ1 �G Φ2 if:

(i) The goal domain ofΦ1 is contained in the start domain
of Φ2, i.e., G1 ⊂ S2;

(ii ) The motion primitiveσ1(t) of the motion policyΦ1

is gracefully composable with the motion primitive
σ2(t) of the motion policyΦ2, i.e., σ1(t f1) = σ2(0)
and σ̇1(t f1) = σ̇2(0). This ensures that the overall
reference position, velocity and acceleration trajectories
are continuous; and

(iii ) The time-varying feedback control lawφ1(t) of the
motion policy Φ1 is gracefully composable with the
feedback control lawφ2(t) of the motion policyΦ2, i.e.,
φ1(t f1) = φ2(0). This ensures that the overall closed-
loop control trajectory is continuous.

The first condition satisfies theprepares relationship[6],
while the next two conditions reduce it to agracefully
prepares relationship. Hence, anygracefully prepares rela-
tionship is by definition aprepares relationship, i.e., Φ1 �G

Φ2 ⇒ Φ1 � Φ2 but not vice-versa.
Since a sequence of gracefully composable motion policies

consists of continuous reference position, velocity, accel-
eration and control trajectories, the resulting closed-loop
motion is graceful. In this work, the motion policy palette
Π(Σ) with a motion primitive setΣ(d) is designed such that
for every pair of gracefully composable motion primitives
(σ1,σ2), their corresponding time-varying feedback control
laws(φ1(t),φ2(t)) are designed to be gracefully composable,
i.e., if σ1(t f1) = σ2(0) and σ̇1(t f1) = σ̇2(0), then φ1(t) and
φ2(t) are designed such thatφ1(t f1) = φ2(0).

IV. I NTEGRATED PLANNING AND CONTROL

Section III presented the offline procedure to design grace-
fully composable motion policies. Now, this section presents
the integrated planning and control procedure that will run
real-time on the robot. First, it will present an automatic
instantiation procedure that generates a large motion policy



library from the offline generated motion policy palette with
a few motion policies. It also presents the procedure to
plan in the space of motion policies and the hybrid control
architecture used to execute the plans.

A. Automatic Instantiation of Motion Policies

The dynamics of wheeled mobile robots are invariant to
transformations of their position variables. This allows us to
place these motion policies at any point in the position space
in any orientation. The process of setting the initial position
and orientation of the motion policies and their constituent
motion primitives is calledinstantiation.

While many instantiation approaches are possible, in this
paper, we present a simple approach of uniformly distributing
the motion policies in position and orientation space to
illustrate the concept. Given a motion policy paletteΠ(Σ)
and a 2D map of the environmentM, the map is uniformly
discretized into instantiation points separated by the distance
d along X and Y directions. This distanced is given by the
distance parameter of the motion primitive setΣ(d). A large
collection of motion policies can be generated from just a
small number of motion policies in the motion policy palette
by instantiating them at the instantiation points in different
pre-defined orientations. The discretization in orientation
space depends on the position space motions produced by the
motion policies in the motion policy palette. In this paper,
we design motion policies that produce motions in the first
quadrant of the position space as shown in Fig. 3(a) and
hence the orientation spacing is set to 90◦.

An instantiated motion policy is valid only if its domainD′

is obstacle-free. We define a motion policy libraryL(Π,M)
as a collection of valid instantiations of motion policies
Φi ∈Π on the mapM. This automatic instantiation procedure
calculates the percentage of the bounded position state space
covered by the start domains of the motion policies in the
library by uniformly sampling the bounded position state
space. If the desired coverage (100%) is not achieved then
the grid spacing is halved and this process continues until
either the desired coverage or the maximum number of such
iterations is achieved. In the case of failing to achieve the
desired coverage, there will be regions in the map that cannot
be achieved using this navigation procedure.

The gracefully prepares relationship between every pair
of motion policies (Φ1,Φ2) in the motion policy library
L(Π,M) can be determined using the conditions presented
in Sec. III-C. A directed graph called thegracefully prepares
graph Ω(L) is generated where each node represents an
instantiated motion policy and each directed edge represents
the gracefully prepares relationship.

B. Planning in Motion Policy Space

The gracefully prepares graphΩ(L) contains all possible
graceful motions that the robot can perform using the motion
policies in the motion policy libraryL(Π,M). The problem
of navigating the mapM can now be formulated as a graph
search problem. Unlike traditional approaches of motion
planning in the space of discrete cells or paths, in this paper,

we use the graph search algorithms to plan in the space of
motion policies (controllers). The graph search algorithms
now provide a sequence of motion policies to achieve the
overall navigation task.

In this work, any navigation task is assumed to be a
motion between trim motion policies,i.e., motion policies
with trim motion primitives. In order to illustrate the validity
of this assumption, let’s consider two navigation tasks: (i)
point-point motion and (ii ) surveillance motion. Any point-
point motion can be formulated as a motion between trim
motion policies that have constant position trajectories as
trim primitives. Similarly, any surveillance motion can be
formulated as a motion between trim motion policies that
have constant velocity trajectories as trim primitives.

Given a goal position state, we use the Euclidean distance
metric to find the closest trim motion policy whose goal
domain contains it. In this paper, we use Dijsktra’s algo-
rithm [20] to solve a single-goal optimal navigation problem
for the gracefully prepares graph. Some candidates for the
optimality criterion are fastest time and shortest path.

Unlike other graph search algorithms likeA∗ that find a
path between two nodes in the graph, Dijsktra’s algorithm
generates a single-goal optimal treeΓ(Ω,G) from the grace-
fully prepares graphΩ(L) such that the optimal path from
all nodes in the graph to the goal nodeG is obtained. This
ensures that all trim conditions in the motion policy library
from which the goal can be reached will be reached by
switching between the motion policies in the tree. Fig. 4
shows example optimal sequences of motion policies with
their domain projections from different initial positions. Each
node in the optimal treeΓ(Ω,G) contains a motion policy
and a pointer to the next node that is optimal towards
reaching the goal node. For a fixed goal navigation task,
Dijsktra’s algorithm is powerful as it does not require any
replanning (unlikeA∗) even when the robot’s position state
jumps to another motion policy domain.

Y
(m

)

X (m)

GOAL

0 1 2 3

0

1

2

3

Fig. 4. An example time-optimal single goal motion policy tree (partial)
with three obstacles, shown in black.

C. Hybrid Control

Given any start node in the optimal treeΓ(Ω,G), the
optimal path to the goal nodeG is obtained by following
the next pointer in the node. A hybrid control architecture is
used as a master/supervisory controller to enable successful
completion of the navigation task. It is responsible for
executing the current motion policy and also switching to
the next optimal motion policy.



The hybrid control architecture contains a timer, which
is reset at the start of every motion policy execution and
it runs out at the end of the motion policy’s time duration
t f . The execution of a motion policyΦi is initiated only
if the robot’s position state is in the start domainSi of
the motion policy and it continues until the timer runs out
and the robot’s position state is in the goal domainGi

of the motion policy. During motion policy execution, the
hybrid controller checks whether the robot’s position state
lies inside the domainD′(t) ∀t ∈ [0, t f ]. The switching to the
next motion policyΦ j happens naturally becauseG j ⊂ Si by
construction. Therefore, the presence of the robot’s position
state inGi implies its presence inS j .

The feedback control lawφi(t) is capable of handling
small disturbances and uncertainties. But in case of large
disturbances, the robot’s position state can exit the domain
D′(t), for somet ∈ [0, t f ]. In such a case, the hybrid controller
stops execution of the current motion policy, finds a motion
policy Φk whose start domainSk contains the robot’s position
state and starts its execution. There is no need for replanning
as the optimal treeΓ(Ω,G) will have an optimal path from
the current motion policyΦk to the goal nodeG. This
motion policy switching is discrete and is not graceful as
the disturbance added to the system is discontinuous.

If 100% coverage was guaranteed during the automatic
instantiation procedure, then there will always exist a motion
policy that captures the robot’s exiting position state. But if
100% coverage was not guaranteed and if no such motion
policy exists, then the hybrid controller stops the navigation
task and switches to the simple balancing mode.

V. EXPERIMENTAL RESULTS

This section presents the results of successful experimental
testing of the proposed integrated planning and control
procedure on the ballbot platform in our lab. The ballbot
uses a particle filter based localization algorithm [21] for
localizing itself on a 2D map of the lab. The odometry data
is provided by the encoders on the ball motors and the laser
readings are provided by a Hokuyo URG-04LX laser range
finder with a 180◦ field of view mounted on the front of
the robot. The ballbot uses occupancy grids for detecting
obstacles with the laser data.

For all the results presented here, the motion policy palette
we used consisted of 39 unique motion policies. The corre-
sponding motion primitives form a motion primitive set with
distance parameterd = 0.5 m (Fig. 3(a)). The motion policies
were automatically instantiated in a 3.5 m× 3.5 m free area
in the lab as described in Sec. IV-A. After instantiation, the
motion policy library consisted of 4521 instantiated motion
policies. The automatic instantiation of the motion policies
and gracefully prepares graph generation happened in 2.5 s
on the dual core computer on the robot. Dijsktra’s algorithm
implementation only takes 0.05 s to generate the single-goal
optimal tree on the same computer. This allows real-time
regeneration of the optimal tree, which is needed to account
for changing goals and dynamic obstacles. In this work, we
choose fastest time as the optimality criterion.

The companion video,Integrated Planning and Control
for Graceful Navigation of Ballbot, shows the ballbot per-
forming all the navigation tasks presented here.

 

 

3

21

4

Y
(m

)

X (m)

GOAL
Reference
Experimental

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

2

2.5

Fig. 5. Point-Point motion with two obstacles, shown in black.

 

 

B
od

y
A

ng
le

(◦ )

Time (s)

X
Y

0 2 4 6 8 10
−3

−2

−1

0

1

2

3

Fig. 6. Body angle trajectories for the point-point motion no. 4.

A. Point-Point Motion

The point-point motion is a motion between static/rest
configurations. This navigation task can be formulated as the
motion between trim motion policies with constant position
motion primitives. Figure 5 shows the ballbot reaching a
single goal position state of (2 m, 2 m, 0 m/s, 0 m/s)
from four different starting configurations using a single-
goal fastest time tree. The resulting body angle trajectories
for the fourth motion is shown in Fig. 6.

Y
(m

)

X (m)

GOAL

Robot Pushed

Domain
Exit

Reference
Experimental

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

2

2.5

Fig. 7. Handling disturbances during point-point motion.

B. Disturbance Handling

To illustrate the ability of our integrated procedure to
handle large disturbances, we physically stopped the ballbot
from moving towards the goal while executing a point-point
motion. Then, we dragged it to a different point on the
map and let go. The hybrid control architecture detected
the domain exit of the motion policy it was executing and
continued to find the best motion policy whose domain
contained the exit state. Since the robot was moved by hand
in an orthogonal direction to its desired motion, the position



state kept exiting the domain of any chosen motion policy
until it was set free to move on its own. Figure 7 shows the
robot successfully reaching the goal once it’s set free.

C. Surveillance

The surveillance motion is a motion between moving con-
figurations and the task is specified as a sequence of moving
goal configurations that repeat. This navigation task can
be formulated as the motion between trim motion policies
that have constant velocity motion primitives. Unlike point-
point motion, the surveillance motion has changing goals and
hence the optimal tree is regenerated while executing the
last motion policy to the current goal. This process repeats
until the user quits the surveillance task. The successful

 

 

Y
(m

)

X (m)

Reference
Experimental

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

2

2.5

Fig. 8. Surveillance motion with four goal configurations, shown in green
and one obstacle, shown in black.

execution of five loops of a surveillance motion with four
goal configurations is shown in Fig. 8. The resulting body
angle trajectories are shown in Fig. 9.

B
od

y
A

ng
le

(◦ )

Time (s)

X
Y

0 10 20 30 40 50 60 70 80 90
−4

−2

0

2

4

Fig. 9. Body angle trajectories for the surveillance motion.

VI. CONCLUSIONS ANDFUTURE WORK

An integrated planning and control procedure that enables
graceful navigation of balancing mobile robots in human
environments was presented and successfully tested on the
ballbot platform. The optimality of the resulting motion
is limited by the motion policies available in the library.
It is difficult to achieve 100% coverage in environments
with narrow paths as the motion policy domain definitions
presented in this work are fixed. We will explore ways to
scale-down these policy domains during instantiation so that
the obstacles can be avoided and the desired coverage can
also be guaranteed.

Dijkstra’s algorithm may not be fast enough for navigation
problems covering larger areas. Therefore, other heuristic
based graph search algorithms like D∗ must be considered.
The design of heuristics is a challenge for such applications

and must be explored. Another approach to handle navigation
problems in larger areas will be to divide them into smaller
regions and piece the locally optimal motions together to
achieve the global goal.

VII. A CKNOWLEDGEMENTS

This work was supported in part by NSF grants IIS-
0308067 and IIS-0535183. We thank Joydeep Biswas for
providing us the localization algorithm implementation.

REFERENCES

[1] R. Hollis, “Ballbots,” Scientific American, pp. 72–78, October 2006.
[2] P. Deegan, B. Thibodeau, and R. Grupen, “Designing a self-stabilizing

robot for dynamic mobile manipulation,”Robotics: Science and Sys-
tems - Workshop on Manipulation for Human Environments, 2006.

[3] M. Stilman, J. Olson, and W. Gloss, “Golem Krang: Dynamically
stable humanoid robot for mobile manipulation,” inIEEE Int’l Conf.
on Robotics and Automation, 2010, pp. 3304–3309.

[4] M. Kumagai and T. Ochiai, “Development of a robot balancingon a
ball,” Intl. Conf. on Control, Automation and Systems, 2008.

[5] http://www.rezero.ethz.ch/projecten.html.
[6] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential com-

position of dynamically dexterous robot behaviors,”The International
Journal of Robotics Research, vol. 18, no. 6, pp. 534–555, 1999.

[7] A. A. Rizzi, J. Gowdy, and R. L. Hollis, “Distributed coordination
in modular precision assembly systems,”The International Journal of
Robotics Research, vol. 20, no. 10, pp. 819–838, 2001.

[8] G. Kantor and A. A. Rizzi, “Feedback control of underactuated
systems via sequential composition: Visually guided controlof a
unicycle,” in 11th International Symposium of Robotics Research,
Siena, Italy, October 2003.

[9] D. C. Conner, H. Choset, and A. A. Rizzi, “Integrated planning
and control for convex-bodied nonholonomic systems using local
feedback,” inProc. Robotics: Science and Systems II, 2006, pp. 57–64.

[10] U. Nagarajan, G. Kantor, and R. Hollis, “Hybrid controlfor navigation
of shape-accelerated underactuated balancing systems,” inProc. IEEE
Conference on Decision and Control, 2010, pp. 3566–3571.

[11] E. Frazzoli, M. A. Dahleh, and E. Feron, “Maneuver-based motion
planning for nonlinear systems with symmetries,”IEEE Transactions
on Robotics, vol. 21, no. 6, 2005.

[12] S. M. LaValle, “Rapidly-exploring random trees: A new tool for
path planning,” inTR 98-11, Computer Science Dept., Iowa State
University, Oct. 1998.

[13] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motionplanning
for agile autonomous vehicles,”AIAA J. Guid., Control, Dynam.,
vol. 25, no. 1, 2002.

[14] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “LQR-
trees: Feedback motion planning via sums-of-squares verification,”
International Journal of Robotics Research, vol. 29, no. 8, 2010.

[15] U. Nagarajan, “Dynamic constraint-based optimal shape trajectory
planner for shape-accelerated underactuated balancing systems,” in
Proceedings of Robotics: Science and Systems, Zaragoza, Spain, 2010.

[16] U. Nagarajan, B. Kim, and R. Hollis, “Planning in high-dimensional
shape space for a single-wheeled balancing mobile robot witharms,”
in Proc. IEEE Int’l Conf. on Robotics and Automation, St. Paul, USA,
2012.

[17] M. Pivtoraiko and A. Kelly, “Efficient constrained pathplanning via
search in state lattices,” in8th International Symposium on Artificial
Intelligence, Robotics and Automation in Space, 2005.

[18] U. Nagarajan, G. Kantor, and R. Hollis, “Trajectory planning and con-
trol of an underactuated dynamically stable single spherical wheeled
mobile robot,” Proc. IEEE Int’l. Conf. on Robotics and Automation,
pp. 3743–3748, 2009.

[19] U. Nagarajan, A. Mampetta, G. Kantor, and R. Hollis, “State transition,
balancing, station keeping, and yaw control for a dynamically stable
single spherical wheel mobile robot,”Proc. IEEE Int’l. Conf. on
Robotics and Automation, pp. 998–1003, 2009.

[20] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[21] J. Biswas, B. Coltin, and M. Veloso, “Corrective gradient refinement
for mobile robot localization,” inProc. IEEE Int’l Conf. on Intelligent
Robots and Systems, 2011, pp. 73–78.


