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Background: 
AAA Interface Tool as developed by the Carnegie Mellon University MSL is a 
tool for simulating, programming and controlling mechanical assembly work in 
a novel way. For the assembly of small size components, a 3D virtual Minifac-
tory has been developed based on AAA Interface Tool. 

The assembly of 3D MEMS structures goes beyond the actual capabilities of 
the virtual minifactory. The micro components are manufactured in a plane, 
from which they have to be collected, rotated by 90° and pushed into holders 
on another plane. 
The 90° rotation requires an additional degree of freedom which is currently 
not available in the existing minifactory. 

Objective: 
The work consists of designing a virtual minifactory which has the additional 
degree of freedom. By this, the virtual minifactory shall be enabled to cope 
with the assembly of the MEMS structures. To do this, several virtual end ef-
fectors of the multi-agent minifactory have to be modelled and programmed. In 
order to show proper minifactory functionality, the operation of the assembly 
shall be shown in a simulation. 

Method: 
In order to get familiar with the concept of AAA and especially with the 3D vir-
tual minifactory, a new assembly project will be simulated which bases on al-
ready existing components. After that, new end effectors shall be introduced, 
which comprise the additional rotational axis. Programming of these end effec-
tors and of the whole minifactory will then lead to a complete simulation of the 
MEMS structures assembly.



Preface 

i 

 
Preface 
I would like to thank Prof. Ralph Hollis for his guidance, his support and the 

opportunity to write this thesis at the Microdynamic System Laboratory and for 

the warm reception in his team. I also would like to thank Prof. Michael Zäh for 

offering the opportunity to do my diploma thesis abroad. Many thanks go to 

Stella Clarke for establishing the connection to the Microdynamic System 

Laboratory at Carnegie Mellon University and advising me in Germany. I would 

like to thank Sherif Zaidan for taking over the second part of the mentoring of 

this thesis.  

Many thanks go to Cornelius Niemeyer for the many fruitful discussions, his 

drive and the good collaboration as lab mate as well as Jay Gowdy, Mark 

Dzmura, Jacob Thomas and Bertram Unger for their support and valuable 

counsels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract 

ii 

 

Abstract  
This thesis describes the construction and programming of two three-

dimensional assembly systems in the framework of the Minifactory. The Mini-

factory is a modular, flexible and agile assembly system that is developed by 

Microdynamic Systems Laboratory (MSL) at Carnegie Mellon University 

(CMU). It consists of two main bodies: the physical representation of an as-

sembly system, which is used to automatically assemble different mechanical 

systems with high precision; and a virtual representation of the same station, 

which is used to set up and test the workflow for the assembly in the real 

world. 

The Interface Tool as a component of the Minifactory concept, provides an en-

vironment for creating and programming virtual factories, which could be af-

terwards directly ported to the physical Minifactories. 

Within this thesis, a first project was realized in cooperation with an optical de-

vices manufacturer. The existing Minifactory set-up was herein used to model 

the assembly of telescopic sights.  

In a second project, limitations of the existing Minifactory set-up were reduced. 

For the assembly of three dimensional MEMS (Micro-Electro-Mechanical-

System) structures, the number of degrees of freedom in the existing Minifac-

tory system did not suffice to handle the task at hand. Thus, an assembly tool 

was developed that provides an additional controllable movement axis and 

thereby an additional degree of freedom. This newly designed axis had to be 

implemented to the Interface Tool. To accomplish this, the source code of the 

Interface Tool had to be accordingly modified and upgraded. 

 The newly implemented axis does not only allow the set up of the MEMS 

assembly system in this project, but also expands the application field of the 

Minifactory for the future. 
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Zusammenfassung 
Diese Arbeit beschreibt die Konstruktion und Programmierung von zwei virtu-

ellen dreidimensionalen Montageanlagen im Rahmen des „Minifactory“- Pro-

jekts. „Minifactory“ ist ein modular aufgebautes, flexibles und schnell anpass-

bares Montagesystem für Produkte in einer Größenanordnung von Mikrometer 

bis Dezimeter, das im Microdynamic Systems Laboratory (MSL) an der Car-

negie Mellon University (CMU) entwickelt wird. Es besteht im Wesentlichen 

aus zwei Teilen: die physikalische Verwirklichung einer Montageanlage, die 

verschiedenste mechanische Systeme automatisch und mit hoher Präzision 

zusammensetzt; und die virtuelle Abbildung derselben Anlage, die dazu be-

nutzt wird, die physikalische Montage vorzubereiten und zu testen. 

Das Interface Tool ist ein Teil des Minifactory Konzepts, das die Umgebung 

schafft, um virtuelle Fabriken zu erzeugen und Programme für die physik-

alischen Minifactories zu schreiben. 

Innerhalb dieser Diplomarbeit wurde zunächst ein Projekt im Auftrag eines 

Herstellers von optischen Systemen bearbeitet. Aufgabe war die Erstellung 

einer Simulation für die Montage eines Zielfernrohrs. 

In einem zweiten Projekt wurden Limitierungen, denen der bis dahin existie-

rende Minfactory Aufbau unterlag behoben. Für die Zusammensetzung von 

dreidimensionalen MEMS- (Mikro-Elektro-Mechanisches-System) Strukturen 

reichte bis zu diesem Zeitpunkt die Anzahl Freiheitsgrade in der existierenden 

Minifactory nicht aus. Im Rahmen dieser Arbeit wurde daher ein Montage-

werkzeug entwickelt, das eine zusätzliche kontrollierbare Bewegungsachse 

ermöglicht, und somit den zusätzlich benötigten Freiheitsgrad liefert. Diese 

neu entwickelte Achse musste in das Interface Tool integriert werden. Dazu 

musste der Quellcode des Interface Tools analysiert, modifiziert und ergänzt 

werden. 

Die neu eingeführte Achse erlaubt nicht nur den Aufbau einer MEMS- Monta-

geanlage, wie es in diesem Projekt behandelt wurde, sondern erweitert das 

Anwendungsgebiet der Minifactory auch für zukünftige Projekte. 
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1 Introduction 
 

Nowadays, three trends become more and more apparent for the development 

of products from the high tech industries. On the one hand, product life cycles 

shorten rapidly. There are several explanations for this development. The 

pressure of competition increases constantly and new products have to be 

brought to market in shorter time intervals. Also, as a second trend, the fast 

progression of technical innovations leads to the fast obsolescence of many 

products. In particular, the electronic industry has to face that their products 

are subjected to a permanent technological change. On the other hand, the 

number of product variants increases continuously. Due to the rising degree of 

individualization the customers care to choose between several variations of a 

product or order a custom product. The miniaturization of products presents 

the third trend. More features have to be integrated on smaller areas. To save 

space and weight, products shrink and their attributes increase in quantity at 

the same time. Break throughs in the sector of nanotechnology fueled this 

trend. The MEMS (Micro-Electro-Mechanical System), for example, is a result 

of this development. Each of these trends poses a challenge for the fabrication 

systems. Some products are affected by all three trends. In these cases re-

strictions usually have to be accepted, since few assembly systems can meet 

all the latter demands. 

The Agile Assembly Architecture (AAA) philosophy developed at the Micrody-

namic Systems Laboratory (MSL) at Carnegie Mellon University (CMU) and its 

instantiation in the Minifactory is an answer to these challenges. With its 

modular structure, easy manageability and high accuracy, Minifactory can 

meet the described demands. 

Minifactory is still a prototype that is subject to permanent development and 

enhancement. During this process, there are research projects together with 

companies which could be future users or buyers. This thesis deals with the 

latest two projects. The first project was undertaken in cooperation with a tele-

scopic-sight manufacturer. In a precision assembly, differently sized and 
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shaped lenses had to be placed in a collimator housing and subsequently fixed 

with screwed-in retainer rings. In this thesis, the generation of a virtual version 

of this Minifactory is described. This project proves the practical applicability of 

Minifactory and demonstrates the qualification of Minifactory for critical as-

sembly tasks that require a high degree of accuracy. The second project de-

scribes the cooperation between MSL and a company specialized on the fabri-

cation and assembly of MEMS. The assembly task consists of building a 3D 

MEMS structure by picking up a micro component, rotating it 90° and placing it 

perpendicularly in a retainer. However, up to then, Minifactory did not provide 

a fifth degree of freedom to rotate the part. Thus, besides creating a virtual fac-

tory for this task, a major part of this project was implementing an additional 

axis in the simulation environment of Minifactory. The additionally obtained 

degree of freedom did not only allow to finalize this project successfully, but 

also expands the application field of Minifactory in general. 

This report is composed of three main chapters. In chapter 2, an introduction 

to the concept and the environment of Minifactory is given. The generation of 

the virtual version of the Minifactory that assembles the telescopic sights is 

described in chapter 3. Chapter 4contains the implementation of the fifth axis 

of the Minifactory and the creation of the virtual assembly of the 3D MEMS 

structures. 
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2 The Agile Assembly Architecture 
 

The concept of the Agile Assembly Architecture (AAA) (Hollis 1995) was de-

veloped at the Microdynamic System Laboratory (MSL) at Carnegie Mellon 

University (CMU). 

It presents a forward-looking approach to meet all demands that are made on 

recent automated assembly systems. Beyond a high degree of flexibility that 

allows versatile applications, AAA provides the agility to adapt to a rapidly 

changing product market. 

To achieve these characteristics, the idea of AAA banks on a modular struc-

ture of the assembly system whose elements can be reused and reassembled 

to new systems over and over - like building blocks in a construction kit. Stan-

dardized basic modules guarantee a high reusability, which can be adapted to 

diverse applications easily and quickly. Standardized data protocols and stan-

dardized mechanical and electrical interfaces facilitate an arbitrary combina-

tion of all elements and a future extension of the assembly system. 

An AAA assembly system is composed of robotic modules that are computa-

tionally independent and therefore do not depend on a central control unit dur-

ing operation. These modules know about their capabilities and communicate 

with each other via network.  

Another characteristic of the AAA philosophy is the close alliance between a 

real assembly system and an identical virtual version of it. An Interface Tool 

provides a basis for the virtual environment and the robotic modules supply 

information about their geometrical models and their behaviour. By means of 

the Interface Tool virtual assembly systems can be designed, programmed 

and simulated with actual module specifications, which can be loaded remotely 

via Internet. Standardized protocols and a huge library of routines as well as 

structured robotic agent autonomy simplify the generation of virtual systems 

and simulations. In these simulations processes can be tested and failures can 

be detected at an early stage. 
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Due to the modular character of AAA and standardized interfaces the real as-

sembly system is built up easily. After the assembly and the alignment of the 

system elements the program, which has already been tested in the simulation 

can be uploaded to the robotic modules. A simple transition from simulated to 

real assembly is supported by the robotic modules’ capability to self calibrate 

and to explore their environment. 

Thus, long set-up times are avoided and a workable assembly system can be 

built up in a very short time. 

 

2.1 Minifactory 
Minifactory represents one way of implementing the Agile Assembly Architec-

ture philosophy. Designed at the MSL, Minifactory is a modular assembly sys-

tem cut to products in an order of magnitude of few micrometers up to some 

centimeters. Realized as a tabletop system, Minifactory consists of basic mod-

ules that can be equipped with robotic modules necessary for the respective 

application. A typical Minifactory set up is shown in Figure 1. 
 
 

Figure 1: T-shaped Minifactory at MSL 
 
Base frame modules (Figure 2), made of aluminum profiles, form the basic 

structure of the factory to which all other modules can be attached. Each base 
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frame includes a base unit, a service module, which supplies up to eight agent 

modules with power, pressured air, vacuum and network services. The con-

nection between base unit and robot modules is made with a single multi-core 

cable and standardized connectors. The robots communicate via a global 

100Mbit network using standard IP protocols and a local 100Mbit network that 

is adapted to real time capabilities. 

On top of the base frame a platen tile is mounted, that functions as factory 

floor (Figure 2). The platen tile consists of a grid of ferromagnetic posts with 

edge lengths and pitches of 1 mm (in each case) embedded in epoxy to shape 

a planar platen surface. Polyethylene curbs surround the platen tile borders in 

order to prevent inadvertent falling of the transportation robot.  
 

 

Figure 2: Minifactory unit 
 
The robotic modules, referred to as agents, can be divided into two main 

classes. A characteristic that both types have in common is the small number 

of degrees of freedom (DOF) they provide. If these robots co-operate, how-

ever, one receives a higher DOF and is able to master complex tasks of as-

sembly.  
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The first class summarizes the courier agents. These robots have two DOFs 

and can move freely on the table level. The task of the couriers is both the 

product transport within the factory and to transiently form cooperative three- 

to five-DOF manipulators.  

The second class contains the manipulator agents. These agents are attached 

to bridges that are fixed to the base frame and span the tiles. Some manipula-

tors are designed according to the functionality of a SCARA (Selective Com-

pliance Assembly Robot Arm) assembly robot that is reduced to two DOF - the 

linear and one rotatory axis. Various end effectors can be attached easily to 

these manipulators and make them flexibly applicable. Apart from this type of 

manipulator, similar agents exist, which have only one linear axis or offer an 

additional rotatory axis. For some join technologies, as bolting small screws, 

there are specialized manipulators. The manipulator agents are responsible for 

the actual assembly process and accomplish the join process. 

In the two projects presented in this report, courier agents and standard two-

DOF overhead manipulator agents are used. In the following sections these 

two types of robot agents will be presented in detail. 

 

The minimal layout of a Minifactory consists of a base frame with integrated 

base unit, a platen, a bridge and the respective courier and manipulator 

agents. This single unit can be upgraded with up to six other robot agents and 

several units can be combined to an entire assembly system. With the aid of 

connecting members and connecting plates, different layouts can be formed 

with a user-defined number of units. 

 

2.1.2 Courier 
In contrast to most conventional assembly systems, conveyor belts or similar 

systems are not used for the product transport in Minifactory. Courier agents 

carry the individual parts and sub-assemblies to the assembly stations. Since 

the couriers can move freely in X and Y direction on the platens, it is not re-

quired that the assembly stations are in a pipelined configuration or are ar-

ranged according to the processing sequence. Another field of functions of the 
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courier is co-operating with manipulators in assembly operations. Both couri-

ers and manipulators have only a small number of DOFs, which is insufficient 

for most assembly tasks. But if a courier and a manipulator act like a team, 

complex processes that require more DOFs can be performed. For the co-

operation, one of the agents gives up its autonomy and is controlled by the 

other agent’s computer.  

A courier unit consists of the mobile courier cube and a so called brain box, 

which is clamped to the side of the base frame. The brain box contains most of 

the electronics and the computing hardware and is plugged in one base unit 

with multi-core cable. A tether that is connected to the brain box manages the 

power and pressured air supply of the courier cubes. The length of the tether 

is the only thing that sets boundaries to the mobility of the courier. 

The courier agents are floating on air bearings at an altitude of 10 -15 µm 

(Hollis 2003) over the platen factory floor. Four planar stepper motors exploit-

ing the Sawyer principle in combination with the grid of ferromagnetic teeth in 

the platen, which provide the reaction force, activate the courier. For exact po-

sitioning, a platen sensor is used that enables close loop control at a resolution 

of 0.2 µm (Gowdy 1999) and at a speed of 1.5 m/s (Quaid 1998). Additionally 

the courier cube features an optical coordination sensor that has the ability to 

detect and measure the relative distance to LED beacons integrated in end 

effectors of manipulators with a resolution of 0.15 µm (Ma 2000).  

On the topside of the courier cubes, mounting possibilities are located for task 

specific appliances. 

 

2.1.3 Manipulator 
The overhead manipulator with two axes (two DOF) represents the standard 

manipulator in the Minifactory modular system and is most flexibly applicable. 

It is able to move vertically along a Z-axis in a range of 150 mm with a resolu-

tion of 5 µm and to rotate 570° in θ around Z with a resolution of 0.0002° 

(Brown 2001). This type of manipulator agent is based on the principle of the 

common 4-DOF SCARA assembly robot, but presents a version which is re-

duced to two axes. A courier agent that co-operates with the manipulator pro-
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vides the other two DOFs. With this division of labor, the disadvantage of 

SCARA robots in terms of insufficient accuracy is eliminated. By the omission 

of heavy robot arms and serial kinematic linkages with relatively flexible joints 

the accuracy and operation speed of the system increases.  

The complete mechanics, electronics and computing hardware are placed in 

another brain box belonging to the manipulator. It is attached to bridges and 

can be positioned at arbitrary positions over the factory floor. An easy trans-

portation and handling is guaranteed by the compact design of the robotic 

agents and is an implementation of the modularity concept.  

For different applications the manipulators can be equipped with several end 

effectors, which can be interconnected by an electrical and pneumatic inter-

face (Figure 3).  
 
 

Figure 3: Connecting interface between manipulator and end effector: a) 
female connector, b) male connector 

 
This interface supplies the end effectors with several power supply lines, pres-

sured air and vacuum channels, which all can be actuated separately. Beside 
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the supply lines there are circuits for common signal input as well as for video 

transmission signals. 

Due to a standardized quick connection at the interface, the end effectors can 

be replaced fast and easily. 

Depending on the assembly task end effectors with different capabilities are 

chosen.  

For instance, end effectors with vacuum grippers, tweezers or with a jammer 

tip have been designed and manufactured. Some end effectors are equipped 

with a video camera and enable vision based operations. Many other end ef-

fectors have been designed for diverse virtual factories.  

 

2.2 Field of Application of Minifactory 
Minifactory was developed for micro assembly tasks. Because of the high 

fidelity of the movements and accuracy of the robot agents, it is not only pre-

destinated for very small products, as MEMS (Micro-Electro-Mechanical Sys-

tem) parts, but also for medium scaled products that feature very small toler-

ances, as optical products. The dimensions of the courier cubes and the work-

space between courier topside and the overhead manipulators is the only limit 

for the maximum size of the products that can be assembled with Minifactory. 

Therefore, it is possible to assemble products that measure up to several 

decimeters, but a loss in throughput has to be taken into account, because 

one courier can only transport a single or a few parts at a time. It is the accu-

racy of the system which limits the minimum size of the products. 

Due to the compact architecture of Minifactory, it would not be complex and 

expensive to set Minifactory up in a clean room. Furthermore, from the outset 

abrasion-resistant materials have been employed and mechanisms have been 

designed in a manner that no abrasion particles can escape the modules’ 

housing. Thus, the requirement for clean working environment, which is indis-

pensable for many parts in micrometer scale, can be met without problems. 

The throughput of Minifactory depends on several factors. The number of as-

sembly steps as well as the complexity of the assembly operations is respon-
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sible for the time a product requires passing through the assembly system. 

Also, as aforementioned, the number of items transported by a courier affects 

the throughput. By dint of high accelerations and accurate retardations of the 

couriers and high maximum velocities of the manipulator agents, operations 

can be executed speedy. In general, Minifactory is designed for small to me-

dium quantities, in certain cases large-scale production is expedient, too. In 

particular, Minifactory is the optimal solution for products that are subject to 

frequent technological change or have short life time cycles. Minifactory was 

planned according to the principle of agility and therefore can be adapted to 

new requirements very smoothly. Because of the short set-up times, the reus-

ability of the system components and the high accuracy, it becomes often 

cost-efficient to automatize assembly tasks which are till now manually oper-

ated.  

 

2.3 Interface Tool 
In common proceeding, the development of an automated assembly system is 

divided into two distinct stages. First, the system is designed and programmed 

in a simulated environment “off-line”. After that, the results of the first stage are 

used “on-line” to reduce the deployment and integration time of the physical 

machines. The gap between on- and off-line systems is so great that usually 

two different software environments are used for the design phase and the de-

ployment and operation phase (Gowdy 1999). Interface Tool combines both 

the environment for planning and creating virtual factories and the platform for 

programming the real factory. 

Programming robots off-line offers theoretically the opportunity to minimize the 

effort and the time for setting up an assembly system. A virtual version of the 

planned factory can be programmed and tested in simulation even before the 

physical factory is installed. Thus, tests can show planning errors at an early 

stage and prevent later expensive modifications at the real system. Writing 

programs for a future task for an already existing system off-line while it is 

executing current task, reduces machine idle time. Performing test runs with 
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the virtual factory is not dangerous and cannot cause damages like dry runs 

with the physical factory. In practice, the off-line programming is only truly use-

ful, if the virtual system matches the physical system to a sufficient degree in 

terms of geometrical structure and functional abilities. Otherwise, programs 

that have been created in off-line mode have to be modified and adapted to 

the real status. Accordingly, time saving is minimized and test results are then 

in many cases invalid.  

AAA Interface Tool provides features that guarantee a highest possible corre-

lation between both worlds, the virtual and the physical.  

At first, all physical existing Minifactory modules are registered with their de-

scription in the so called component palette list of the Interface Tool (see 

Figure 4). That means, information about the body structure, the ability and the 

way of the connection to other components of each module is entered. The 

component palette is a list of iconified representations of the modules along 

with buttons to insert the representation into the virtual environment (Gowdy 

1999). Since for creating diverse assembly systems only a small number of 

different standardized modules is necessary and the modules are assembled 

according to the same rules in the real as well as in the simulated environ-

ment, most big disparities are eliminated from the outset. The component pal-

ette list is not a passive catalog, but draws its data content via Internet from 

the several robotic agents, which have the ability to represent themselves to 

the Interface Tool. Thereby, the list can be updated easily whenever already 

uploaded agents get modified or new agents are included in the range of Mini-

factory modules.  

To assure a high degree of analogy between the two systems during the com-

plete lifetime of a Minifactory, Interface Tool offers the possibility of transitions 

between simulation and reality in both directions. This means that once the 

programming of the physical assembly system has to be modified, the 

changes can also be transferred to the simulated system easily. Contrary to 

most common simulation approaches, where transition from simulation to real-

ity is just done once, with Interface Tool the full potential of simulation can be 

utilized. Lastly, the real robot agents have the capability to calibrate them-
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selves and explore their physical environments. Thereby, little gaps between 

the simulated and the physical factory can be compensated. 

With these features the approach of Interface Tool provides a high degree of 

agility – the over all goal of AAA.  

 

2.3.1 Structure of the Interface Tool 
The structure of Interface Tool consists of different layers that are constructed 

one on top of the other. 
 

Figure 4: GUI of the Interface Tool with the component palette on the left 
 
On the highest-level, Interface Tool provides a graphical user interface (GUI) 

that allows the factory designer to construct factories in a very convenient way 

(Figure 4). Based on the Open Inventor platform, this part of the Interface Tool 

offers all benefits of the windows design, as menu bar and dialog boxes. In this 

environment, Minifactories can be assembled (Figure 5) by choosing the re-

quired components from the component palette, which are then linked by a 

few commands. Further information about the building of a virtual factory with 

Interface Tool can be found in chapter 3.2.3.3.  

The user interface also provides 3D rendering of the running simulated factory 

as a whole. The factory designer can change the viewing angle, zoom in/out 
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and regulate the execution speed/ simulation velocity. Once the real Minifac-

tory has been set up and is operating, it does not depend on the Interface Tool 

anymore, as after uploading programs from the simulated factory to the real 

robot agents each one has its own controller and operates independently of a 

central control unit. The GUI, however, can be used to display the processes 

in real time and serve as a monitoring device.  
 

 

Figure 5: Assembly of the Minifactory components 
 
The programs for the simulated and the physical Minifactories, respectively, 

are written in Python (a byte-coded, object orientated programming/script lan-

guage) at a lower level. With the Python program, the user specifies the run-

time behavior of the agents. These programs instantiate objects together with 

its required methods. The program objects have a bind method which is used 

to specify all of the global factory components the agents will use, and a run 

method which is the actual script that defines the run-time behavior of the 

agents (Gowdy 1999). 

By assembling a virtual factory with the GUI, the basic structure of the Python 

program is already built. The chosen components are included with their posi-

tion matrixes and parent-child-relations in the Python script automatically. The 

user just has to add the command lines which determine the behavior of the 
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agents to the script. There is a huge library with diverse commands for each 

type of robot agent to manage many different assembly tasks with Minifactory. 

The Python level is based on data coded written in the source language C++. 

This architecture reduces the effort for programming the factories, as Python is 

a quite incomplex language, and only comparatively short text blocks have to 

be programmed. 

All Minifactory component and product descriptions are objects that are repre-

sented by the Description Class (Figure 6).  
 

 

Figure 6: Class diagram for factory descriptions 
 
In the product description (ProductDesc) subclass all products getting assem-

bled in a virtual factory are defined. The descriptions of all factory components 

have to be subclasses of ComponetDesc. Static structure components, as 

base frames and platens, as well as agents are counted in these subclasses. 

Every agent description - courier and manipulator - has to be a subclass of 

AgentDesc, which contains a field named “interface” (Gowdy 1999). 

The interface field itself is a database that encapsulates the actual implemen-

tation of both simulated agents running in the Interface Tool and physically ini-

tiated agents the Interface Tool is interacting with remotely. State variables, 

which can be monitored, and parameters which can be changed to influence 

the operation of simulated or physical agents, can be entered into this data-

base. The value of the interface field must be a subclass of the Interface class 

(Figure 7).  

Description

ManipulatorDesc CourierDesc

AgentDesc FrameDescPlatenDesc 

ComponentDescProductDesc 

is-a 

is-a is-a is-a 

is-a is-a 

is-a 
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Figure 7: Class diagram for agents Interfaces 
 
These agent description interfaces must implement an update method, which 

is called by the Interface Tool as often as possible. To move the rendered 

parts of the agents’ description, as the graphic representation of a courier slid-

ing on a platen, a particular implementation of the update method is neces-

sary. The structure of the Interface Tool C++ programs is highly nested. This 

fact is attributed on the one hand to so many derived subclasses, on the other 

hand to the numerous use of macros (separately defined variables or small 

functions). 

The object oriented structure of Interface Tool accommodates the modular 

character of Minifactory. Each factory component is a self-contained 

class/subclass that provides particular methods to describe its appearance. 

For instance, all objects offer a method that defines with which parts and how 

the component is assembled. Thus, the GUI can assure the correct assembly 

of the virtual factories by implementing these methods. 

Currently, the user can choose between two different environments within the 

Interface Tool. On the one hand, there is the tool environment, which is used 

to provide the physical interaction with the agents as described above. On the 

other, hand Interface Tool offers the sim environment, which can solely be 

used to design and program virtual factories.  

The GUI of the two environments are similarly designed and offer the same 

capabilities except for a dialog box for making pictures and recording movies 

of the simulated Minifactory, which is only a feature of the sim environment. 

Interface

RealAgentInterface

AgentInterface

is-a 

is-a 

is-a is-a 

SimAgentInterface

SimCourierInterface SimManipulatorInter-

is-a 
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Both environments have access to the same information about the description 

of factory components and products. A point the sim and tool environment dif-

fer in is the coding of the run behavior of the assembly system in Python. 

Though the structure of the Python script is identical, the commands for the 

agents are different. As the virtual agents do not have to care about how to 

control the motors and valves exactly, the commands are simplified in the sim 

environment. For instance, a simulated overhead manipulator with a vacuum 

gripper picks a part by moving its virtual end effector until it reaches the part’s 

surface in order to bind it virtually to itself without controlling the position of the 

effector or the real vacuum flow. That is the reason for the partition in two 

separate systems. The programming in the sim environment is more conven-

ient and faster, because the commands are easier to handle. Therefore, the 

sim part of the Interface Tool is the ideal medium for users who only need a 

virtual version of their planned factory. The direct translation from a sim- to a 

tool-factory is not possible. 

The dispartment is not part of the final solution of the Interface Tool. Since the 

representation of almost every agent existed in the virtual reality long before 

the agent is actually built in reality, sim environment offers the opportunity to 

include agents in a factory simulation without knowing the exact commands 

needed for the control of the physical machine. 

As long as Interface Tool and Minifactory are still in the state of development, 

it makes no sense to unify both environments. 

 

2.3.2 Designing and Programming a Virtual Minifactory 
Since this thesis deals mainly with the creation of virtual factories, the following 

paragraph describes primarily the standard procedure for setting up a virtual 

Minifactory with the Interface Tool sim environment.  

First, the factory designer opens a window with the graphical user interface of 

Interface Tool and assembles a factory from modules (see Figure 4). The re-

quired modules and parts can be chosen from the component palette or can 

be downloaded via WWW, the latter option will be of importance when Minifac-

tory is marketable and a network of manufactures offer agents. In contrast to 
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basic modules, like base units and platens, which can be used universally for 

every kind of factory, agent modules have to be modified for each task in most 

instances. In many cases it is enough to equip a mounting on the courier, 

which carries products and/or the tools and to adapt specialized end effectors 

to standard manipulators. Component part retainers as well as end effectors 

are custom-made factory component. Often there are CAD (Computer Aided 

Design) construction plans that can be used to create virtual representations of 

these components in the Interface Tool environment. Otherwise, CAD files of 

the required parts have to be designed. When designing the parts, the level of 

abstraction is allowed to be relatively high. This means that only the surface 

and not the inner life of the parts, and only essential details have to be repro-

duced. The same proceeding also applies to component parts and products, 

which get assembled in the virtual Minifactory. 

All types of CAD files have to be converted into Inventor files (.iv) so that they 

can be displayed by the GUI user interface (Figure 8). 
 

 
 

 

Figure 8: ZYVEX mechanism in Pro/E  and in Open Inventor format  
 
After exporting the iv-files from the CAD program to the Interface Tool, they 

have to be adjusted to the simulated environment. These adjustments can be 

changes of the unit (inch, mm), of the transformation matrixes or of the mate-

rial. The modified iv-files are then included in the Python files, the only file for-

mat Minifactory can work with. The in Python files encapsulated iv-files affect 

then the appearance of the used courier or manipulator. 
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As soon as all required components of the virtual factory are provided, the fac-

tory designer links the parts together by marking two parts with the cursor at a 

time and activating the assemble command. All possible connection locations 

of the components are hard-coded in their C++ files, so that invalid connec-

tions cannot be made. Since there are several available locations, the compo-

nents have to be positioned and orientated to guarantee the desired assembly. 

The alignment of the modules can be realized by changing the cursor mode 

from marking to moving.  

There are two alternatives to integrate the component parts of the future prod-

ucts into the simulated Minifactories. In case the parts are to be placed already 

in the retainers when the simulation is called, their iv-files have to be included 

later in couriers’ Python files. If the parts are supposed to appear during the 

assembly simulation, their iv-files have to be included in the main program - 

also a Python file - of the Minifactory. Latter version is used for instance if ad-

hesive application is to be simulated during join proceeding.  

After implementing the described scheme, one obtains a static 3D image of 

the planned Minifactory, which can already be used to make pictures. 

Up to this point the proceeding is in both environments, the sim-environment 

and the tool-environment, absolutely similar. 

In the next step the behavior of the agent modules is programmed. In order to 

do that, the just generated factory (.fac) file has to be opened in any compiler. 

As previously mentioned, by designing a Minifactory with the GUI, the basic 

structure of the program is already built automatically.  
 
file base_frame.aaa { 
    children { 
        file lg_platen.aaa { 
             
            matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 570 1 ] 
        } 
        file Osti_courier_1.aaa { 
            matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 450 -330 655 1 ] 
             
            member home { 
                matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 -450 330 15 1 ] 
            } 

Source code 1: Code extract of OSTI fac-file 
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The structure is characterized by parent-child-relations, as a base frame is the 

parent of the platen and of all couriers attached to it, or as an overhead ma-

nipulator is the child of a bridge (Source code 1).  

Each child exhibits as a member field a matrix that defines its position relative 

to the zero point of the global coordinate system. 

The actual code for the assembly movements is included under the member 

fields of the agent children. The included move commands can been seen in 

the complete OSTI factory file in appendix: A OSTI Files. After saving the 

upgraded fac-file, the factory designer opens it with the GUI again. Now the 

simulation can be played, analyzed and tested for failures. As there is no built-

in collision detection control, there is no automatic prevention of agents collid-

ing with basic modules or other robot agents. Thus in the run-mode the user 

has to monitor the assembly system closely not only to scrutinize the se-

quence of the assembly but also to detect collisions. The program must be 

modified until the virtual Minifactory works properly. Of course the testing 

phase is also an essential part of the factory building procedure in the tool en-

vironment. There it is even of higher importance because it can prevent dam-

age of the physical factory. 

 

2.4 Setting Up a Working System 
Before the start of this thesis, hardware and software of Minifactory were modi-

fied or upgraded. The computer hardware of the physical agents (courier and 

standard overhead manipulators) were changed to embed Intel Celeron M sys-

tems and the operating system was switched from LynxOs to QNX. Further-

more, a new end effector system with a novel optical system has been de-

signed and equipped.  

The Interface Tool was moved and ported from a Silicon Graphics machine to 

a new X86 PC computer running on Linux. This operation however could not 

be accomplished completely in the planned time and thus some of the modifi-

cations were not finished by the start of this project. For this reason, the adap-

tion of the system was integrated into this thesis as a first part. Since this the-
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sis deals with simulated factories, problems concerning the Interface Tool are 

presented in the following paragraph. After the transfer of the Interface Tool to 

the Linux environment, comprehensive testing of the system was not carried 

out in order to save time for the main part of the thesis. 

Occurring problems throughout the project due to the missing testing espe-

cially with functions that were not needed in the beginning, were solved on the 

fly. At first, a problem with time variables, which are responsible for the work-

flow of the simulated Minifactory, had to be solved. Thereafter, it appeared that 

all simulations ran very slowly and jerkily. This was caused by an incorrect in-

stallation of the graphics card, whose hardware first was not used for the 3D 

rendering of any Linux applications. Also, the GUI did not work correctly in the 

beginning, as the factory components could not be connected in the intended 

places.  

Most of the ordinary problems were caused by missing libraries or wrong de-

fault paths, a result of the previous computer system change. At least almost 

the entire functionality of the Interface Tool could be restored and only unim-

portant features, like the option for shortcut control of the GUI, were not re-

paired. 

Another difficulty was, that a significant part of the existing documentation, 

which refers exclusively to the Interface Tool on the Silicon Graphics machine, 

is not valid for the Interface Tool on the X86 PC system. Thus, in many cases 

the handling with Interface Tool had to be learned by trial and error. 
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3 OSTI Project: Assembly of Telescopic Sight 
 

Optical System Technology, Inc. (OSTI), Kittanning, PA, USA, a subsidiary of 

OmniTech Partners Inc., is specialized in manufacturing night sights and other 

small arm weapon sights. Currently, the manufacture techniques for electro 

optic sub-assemblies at OSTI are often labor intensive and require specialized 

handling to prevent the damage of components. Furthermore, frequent in-

process cleaning is essential for the later functional efficiency of the products. 

Most of the assembly is done manually and many tasks must be performed by 

specialized personnel. This skilled personnel spends a significant amount of its 

time to these lower-skill tasks during product assembly and tests. Thus, OSTI 

makes approaches to automate the assembly of optical systems. Since the 

assembly procedures, processes and components are subjected to a continu-

ous improvement and adaptation process, and new products with similar char-

acteristics but different components are taken up regularly in the product port-

folio, not only a flexible but also an agile assembly system is required for this 

assembly task. 

Minifactory is predestinated to produce these optical devices in an automated 

assembly line. In comparison with traditional automated assembly systems, 

Minifactory can meet these demands. It is part of the AAA philosophy to adapt 

to new tasks fast and easily. This ability allows the assembly of different prod-

uct variations within the same product line. Thereby, assembly cost can be re-

duced and customized solutions can be embedded in the standard production 

line. As OSTI has many different sub-assemblies that could be built on the 

same automated platform, AAA is specially qualified for these assembly tasks. 

Minifactory also has the ability to perform the same operations on similar sub-

assemblies. Another benefit is the high precision of Minifactory, which is re-

quired for many assembly steps at OSTI and which is inherent to the system of 

AAA. The simple adaptation of Minifactory to a clean room system is a reason 

for using AAA for OSTI applications.  
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Because of the combination of versatility and precision AAA offers, OSTI 

chose Minifactory to make an attempt to automate the assembly of optical sys-

tems. 

 

3.1 Task Analysis  
For a first assembly task, OSTI proposed the automated assembly of a colli-

mator sub-assembly. This sub-assembly consists of a collimator housing, four 

lens elements, three lens retainer rings and a lens spacer (Figure 9). 

The following three basic operation types are required for the assembly:  

• Pick and place operation to grasp, transport and position the component 

parts 

• Adhesive application to fix lens element #1 

• Screwing processes to tighten the lens retainers 

Since the glue dispensing agent was still in development and thus not applica-

ble, only a dry assembly was attempted. 
 

Figure 9: OSTI collimator 
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The OSTI project was partitioned into smaller work packages and handled by 

a team. The work packages are listed below: 

1. Designing of an end effector and tools to pick and place parts and to 

screw the retainer rings. 

2. Generating a virtual Minifactory simulation and visualizing the assembly 

process. 

3. Programming the actual pick, place and screwing operation to be per-

formed by the factory agents. 

4. Joining the separate results back together and creating a working as-

sembly.  

Though the separate steps (1-4) depend on each other for the most part, the 

procedure is not strictly chronological. Thus, work packages could be partially 

settled parallel. The author of this thesis dealt predominantly with task two, 

whose work report is presented in the following sections. 

 

3.2  Proceeding  
The output of this work package is an operable virtual Minifactory that assem-

bles collimator sub-assemblies. Pro/E (Pro/Engineer) files of the end effector, 

courier mountings, the tools and the collimator components as well as assem-

bly information from OSTI were available as input information.  
To generate the simulated assembly system, the task was handled in accor-

dance with the following schedule: 

1. Modifying the Pro/E files to adapt them to the requirements of the Inter-

face Tool.  

2. Transferring the part-files to the Interface Tool and transforming them to 

virtual objects. 

3. Designing a virtual Minifactory. 

4. Programming the virtual Minifactory. 
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3.2.1 Modification and Adaptation of the Pro/E Files 

The team member who designed the parts provided the Pro/E files. The deliv-

ered folders include files containing the single components of the new end ef-

fector and of the two courier mountings as well as files of the tools and collima-

tor parts. As all workshop drawings base on these 3D files, they show every 

detail. For the simulated factory, many of these details are unnecessary or 

even unwished. Some details are needless, because they are located inside 

the parts, as for example the lens system of the camera inside the new end 

effector, and are not displayed in the simulation – only the surface of the parts 

is shown. Other details, like screw holes in factory components, have no func-

tion in the virtual environment and are unnecessary. In principle, screws and 

other fixing devices are only displayed in the virtual Minifactory, if they are very 

characteristic or if they take part in a joining proceeding for the product as-

sembly. Very small details – especially with micro assembly – cannot be dis-

played or only by excessive zooming. But the fact that the user cannot view 

them does not mean that they do not exist. To reduce the required computing 

power and to avoid a slowing of the simulation, it is advisable to keep only de-

tails that are essential for assembly proceeding or for understanding of the as-

sembly system, because every additional edge means more rendering effort. 

Thus the first step contains the abstraction of all parts. For the file editing, 

Pro/E Wildfire 2.0 was used. Each part was reviewed and checked for dispen-

sable details. Depending on the nature of the details, there are two ways to 

remove them. If these items are ordinary elements of the part, as drill holes or 

rounded edges, they can be undone by deleting them in the tree diagram of 

the part. But if the details are plaited in geometrically dependencies or are 

elements of the inner life of the part, it is often less labor-intensive to redesign 

the parts. In this manner, parts with a complex surface structure or internal 

spaces were replaced by simpler geometrical bodies. Sometimes it was expe-

dient to replace a sub-assembly, consisting of several complex component 

parts, by a single solid part. 

In some cases the design of the parts had to be reengineered in the tool shop. 

To keep an accurate match between the physical and virtual assembly system, 
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these changes have to be adapted to the Pro/E files. Also, material and color 

of the virtual components have to be adjusted to the appearance of the physi-

cal parts. 

After all reasonable abstractions have been made, the end effector and the 

two courier mountings, which contain the collimator components and the tools, 

are assembled and saved as Pro/E assembly files.  

Before transferring the files to the Interface Tool, it should be checked if the 

point of origin of the parts and assemblies is located favorable to the later use 

in the Interface Tool. By choosing the point of origin cleverly, the later effort for 

transforming the parts’ matrixes can be reduced considerably. 

All Pro/E files have to be converted into iv-files, so that they can be displayed 

with the Open Inventor. The choice of the iv-files resolution must be well 

considered. The resolution defines the number of triangles the surface of the 

part’s image is constructed of. A balance has to be found between too many 

triangles, which requires a higher computing power, and too few, which would 

cause a very square-edged image. 

 

3.2.2 Transformation of the Parts Files to Virtual Objects 
Since Pro/E does not work on a Linux system, the iv-files have to be trans-

ferred via network from a Windows machine to the computer the Interface Tool 

is installed on. 

Once the iv-files have been sent to the Interface Tool, they were saved in a 

folder which has to be integrated at the right place in the path of Interface Tool, 

so that  the program running the simulated factory can access them. 

Before the iv-files can be used in the virtual environment, they have to be 

modified. Since Minifactory bases on the metric system, the unit of the iv-file 

has to be changed from inch to mm (Source code 2). Now the files can be 

opened with the Ivviewer, a program that can display the content of iv-files, 

and be checked for bugs and appearance. An iv-file offers under the category 

“Material” the option to change the colors and transparency of the part compo-

nents. In this way, changes of color nuances can be made to optimize con-

trasts and consort tones without going back to Pro/E (Source code 2). 
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For instance, the transparency of the lens elements was increased to obtain a 

glass like appearance. 
 
Separator { 
    ShapeHints { 
        hints    (SOLID | ORDERED | CONVEX) 
    } 
    Units { 
            units MILLIMETERS 
    } 
    Transform { 
      rotation 1 0 0 1.57079 
         translation 0 0 6.20557 
    } 
    Material { 
        diffuseColor    0.548947 0.744058 1 
            transparency 0.5 
    } 

Source code 2: code extract from iv-file of lens element #1 
 
The iv-files cannot be integrated directly into a virtual factory but have to be 

embedded into Python files, which are called AAA-files (.aaa) (Figure 10).  
 

 

Figure 10: Conversion of part files 
 
Depending on the part kind, there are three different objects to build an aaa-

file from the iv-data. 

• Iv-files of component parts of products (except courier fixtures)  and 

demountable tools 

• Iv-files of courier attachment 

• Iv-files of end effector parts 

In this project the collimator, the lens elements, retainers, spacer and tools are 

among the first category. The iv-files of these parts are built in aaa-files as fol-

lows: 
 
Description { 
    view InventorView { body { File {name element_1.iv } } }  
} 

Source code 3: aaa-file of the lens element #1 

PRO/E file format (.prt/.asm) 

Open Inventor file format (.iv) 

Python file format (.aaa) 
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The integration of the other two categories is done in the course of creation of 

the new factory components and presented in the following section. 

 

3.2.3 Designing a Virtual Minifactory 
In this project, the nontypical case is present that the physical factory has al-

ready been set up. Thus, the virtual factory is modeled on the real factory. 

However, this initial position does not forbid categorically any changes in the 

real factory’s setup.  

The physical Minifactory works with a single unit consisting of: 

1x base frame + base unit 

1x platen tile  

1x bridge 

6x curb elements 

1x standard overhead manipulator with customized end effector 

2x standard couriers modules with customized attachments 

Except for the robot agent, the virtual Minifactory can be built from standard 

Minifactory modules which can be chosen from the component palette. Stan-

dard manipulator and standard courier can provide a base for the agents in the 

OSTI factory. 

3.2.3.1 Creating the OSTI Manipulator 

In most instances, standard manipulators have to be adapted to the applica-

tions. The already existing manipulators can only be used for assembly tasks 

which can be managed with standard tools, as standard vacuum grippers. 

Otherwise, the manipulator’s end effector or the assembly tool equipped to the 

end effector has to be replaced - just as in the physical world. In the GUI of the 

Interface Tool manipulator, end effector and assembly tool are treated like one 

object and for every newly designed end effector/tool a new manipulator file 

must be added to the component palette. The files are interlaced in the follow-

ing way:  
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Figure 11: Nesting levels of manipulator files 
 
The aaa-file of a manipulator contains the iv-files for its brain box and its arm 

as well as an aaa-file of the end effector, which is equipped to its arm. Fur-

thermore it contains a gif (Graphic Interchange Format) file that is responsible 

for the thumbnail picture of the manipulator in the component palette, and the 

link to the ProgManipulatorInterface determining its behavior (see Figure 7).  

The end effector aaa-file, which is included in the manipulator aaa-file, con-

tains iv-files for its appearance and iv-files for the tool attached to it. 

This structure allows an easy combination of different manipulators, end effec-

tors and assembly tools and simplifies the creation proceeding of appropriate 

manipulators. At best, only the tool iv-files and the manipulator gif-file have to 

be replaced to obtain a new agent. 

For the OSTI project, not only a new assembly tool but also a new end effector 

type (Figure 12) has to be attached to a manipulator (see Figure 11). 

 

manipulator aaa-file 

end effector aaa-file 

end effector iv-file 

assembly tool iv-file 
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Figure 12: New end effector with attached camera 
 
The new end effector was not developed solely for the OSTI project, but pre-

sents the new standard end effector for all future applications, and the newly 

designed tools bank on it. 

In the first step a new end effector aaa-file, which contains the iv-file of the 

new end effector, is coded (Source code 4).  

Then, this newly created aaa-file is included in the source code of a manipula-

tor (Source code 5). The standard manipulator with a common brain box and 

arm is chosen for this purpose. This new manipulator file is also added to the 

component palette so that the result can be viewed in the virtual factory envi-

ronment (aaa-files cannot be displayed by the Ivviewer). 
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Effector { 
    view InventorView { 
        body { 
            File { 
                name neweffector.iv 
            }        
        }    
    } 
    grippers ( 
              Link { 
                  num <Int> 2 
                  matrix [1, 0, 0, 0, 
                          0, 1, 0, 0, 
                          0, 0, 1, 0, 
                          0, 0, -71.801, 1] 
 
                  mount { { 0, 0, -1 }, { 0, 0, 0} } 
              } 
              ) 
} 
Source code 4: OSTI end effector aaa-file 
 
file common_manip.aaa { 
    
    image file Osti_manip.gif 
     
    effector file Osti_endeffector.aaa {} 
 
    interface ProgManipulatorInterface { 
    } 
} 
Source code 5: OSTI manipulator aaa-file 
 
In the physical Minifactory, the position of the end effector relative to the end of 

the manipulator’s arm bar is defined by the connection interface (Figure 3). In 

the virtual version, the points of origin of the two components determine the 

location of the end effector. By integrating the end effector iv-file into the ma-

nipulator aaa-file, the two points of origin are congruent by default. To check 

the positions of the two components, a test factory file, only consisting of one 

of the new manipulators, can be started. Almost in every case the position of 

the end effector has to be adjusted. The two problems that occur most fre-

quently are on the one hand a twisted and on the other hand a displaced end 

effector. Often, there is a combination of both problems. The first problem can 

be explained by the fact that only the points of origin but not the corresponding 

planes (X-plane and X-plane etc.) are congruent. This can be solved by rotat-

ing the end effector’s coordinate system in the iv-file (like in Source code 2). 

The displacement is caused by a disadvantageous location of the end effec-

tor’s point of origin. A sphere with the center coordinates (0,0,0) can be added 
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to the iv-files to uncover the points of origin of the parts. To view the spheres, 

the visualization settings of the GUI can be change from solid mode to line 

mode, which displays solely the edges of the triangles and allows a look inside 

the bodies (Figure 13). 

By adding a transformation in the iv-file of the end effector, the current origin 

can be translated to the desired point of origin. Since there is no such thing 

like a connector that defines the clearance between manipulator bar and the 

end effector flange, the clearance has to be coded manually. To get the nu-

merical number of the offset between both parts, measuring at the physical 

factory and metering in the accordant Pro/E files is required. After attaching 

the new end effector to a standard manipulator agent, the assembly tool for 

the OSTI task is linked to the newly created manipulator. The orientation and 

position of the tool is adjusted to the end effector in the same way the end ef-

fector’s orientation and position is adapted to the position to the manipulator’s 

arm. After that, the direction of the tool (downwards= 0,0,-1, sidewards=+/-

1,0,0 or 0,+/-1,0) and the coordinates of the tool tip relative to its origin have to 

be specified. In a final step, a picture of the new manipulator agent is taken in 

the environment of the GUI with the built-in picture function. This picture is 

then converted into gif-format  and integrated in the manipulator aaa-file. 
 
 

 

Figure 13:  Line mode of the GUI 
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3.2.3.2 Creating the OSTI Couriers 

The virtual courier agents provided by the Interface Tool consist of a brain box, 

the courier cube and the connecting tether. The courier cubes are bare and 

can be equipped with mountings for retaining product parts as well as change-

able tools. Similar to the manipulator-end effector-relation, a new courier has 

to be created whenever a new mounting is to be attached. Similar to the ma-

nipulator aaa-files, a courier file contains in addition to the gif-file and iv-files 

for its components, as brain box and cube, iv-files with information about the 

attachments. 

The afore edited iv-files of the retainers are included each in one new courier 

aaa-file. These retainers also have to be aligned by including rotation and 

translation operations into their iv-files. To guarantee a high accordance be-

tween virtual and physical Minifactory, the accurate values of mounting posi-

tions have to be measured at the real factory. At assembly, tasks with low tol-

erances, even a few mm difference, can cause problems as soon as the pro-

gram of the virtual factory is uploaded to the real factory.  

The simulation schedule of the OSTI project stipulates that collimator parts do 

not appear on the couriers until the simulation is started. In doing so, the man-

ual filling of the retainers is simulated. Thus, the iv-files of the collimator com-

ponents are not element of the courier aaa-files but are integrated in the main 

program file. The spaces where the product parts are fixed, however, have to 

be marked in the courier aaa-files. These marks, named ‘fixtures’, contain the 

coordinates (X,Y) of the empty spaces and an arbitrary name. All create, pick 

and place commands refer later to these names. The fixture’s coordinates de-

fine the place where the component’s point of origin is located and are relative 

to the courier’s point of origin. The simplest way to obtain the coordinate val-

ues is measuring the Pro/E models of the courier mountings.  

As in the case of the OSTI manipulator, a pictures was taken of each new cou-

rier to receive a gif-file for the courier aaa-files. 
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3.2.3.3 Setting Up the Virtual Minifactory  

After creating the OSTI manipulator and the two OSTI courier agents, the fac-

tory can be assembled. The other required factory modules are listed at the 

beginning of section 3 and were already available as standard parts. 

In the GUI, the base frame and the platen are connected and a bridge is at-

tached in the center of the base frame. The two OSTI-courier brain boxes are 

clamped on the left and on the right side of the base frame and the OSTI-

manipulator is attached in the center of the bridge (Figure 14). 
 

 

Figure 14: Set up of the OSTI Minifactory 
 
After the assembly, the factory components can be moved in the environment 

of the GUI in the same DOFs like the components of the real factory can be 

moved for adjustment purpose. In this way, a rough alignment is possible. An 

accurate positioning can only be achieved by entering the numerical values, 

which were measured at the real factory, in the component’s position matrix in 

the factory-file. To change the matrix that defines the 3D position of the factory 

components in the virtual environment, the OSTI factory has to be saved and 
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the GUI closed. Then, the OSTI-file has to be opened with the compiler pro-

gram to view and modify the matrixes in the source code. 

 

3.2.4 Programming the Virtual Factory 
The fac-file created in step 3 is the basis for the further procedure. This fac-file 

can be generated with the GUI of both Interface Tool environments (sim and 

tool). However, the use of the sim-version is recommended, because it offers a 

more convenient way to make the thumbnails required for the component pal-

ette. As long as the factory file contains no program lines for the assembly 

processing, it can be opened and compiled in both environments. In this pro-

ject, it was decided to start with the creation of a simulation in the sim envi-

ronment. 

 

3.2.4.1 Factory Concept 

The factory set up in this project is a test system and is supposed to prove the 

qualification of AAA for OSTI applications. This factory was not designed for 

serial production, but to demonstrate the high precision and velocity of the 

Minifactory. For this reason and for a fast realization of the demands, a factory 

with only three robotic agents is conceived. Here is the assignments of tasks: 

The manipulator is equipped with a vacuum tool, which can grasp different 

pick up tools, and performs all assembly operations (Figure 15). 

 

Figure 15: New end effector with attached OSTI vacuum tool 
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The first courier agent carries the collimator housing. Figure 16 a) shows the 

retainer for the collimator housing. To the second courier, a tray is attached 

which contains the other product parts and the tools (Figure 16 b).  
 

a)  b)

Figure 16: Courier mountings 

The tray provides an own fixture for each part. Since this concept does not 

provide a separate manipulator agent for each product element but a single 

manipulator with a tool change system, there must also be a depository for the 

different tools to be used with the different parts. Thus, the second courier also 

carries the pick up tools, each on top of the corresponding part. 

 
In the physical Minifactory, the end effector grasps the pick up tools via vac-

uum. Beside the vacuum channel for holding the pick up tools, the vacuum tool 

equipped to the end effector features another vacuum channel that supplies 

the attached pick up tools with vacuum. The vacuum tool (Figure 17 a) 

equipped to the end effector features beside the vacuum channel for holding 

the pick up tools another vacuum cannel that supplies the attached tools with a 

vacuum. Since the two vacuum channels can be controlled independently, it is 

possible to lift tool and part at once and to place the part alone.  

All tools used for the OSTI project handle the product parts with low-pressure. 

The pick up tools for the retainer rings additionally comprise salient angles on 

two opposite sides that fit into the recess of the retainers. With these devices, 

the torque from the manipulator can be transmitted to the rings, so that they 

can be screwed into the threads of the collimator housing. 
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The described factory concept is appropriate to the assembly of a single colli-

mator and has to be reloaded manually to assemble another collimator. 
 
 

Figure 17: a) OSTI vacuum tool, b)+c) retainer ring tools (sections) 
 
 

3.2.4.2 The Assembly Sequence 

Currently, products like the collimator sub-assembly are assembled completely 

manually at OSTI. Since these kinds of optical products are very sensitive to 

pollution, many intermediate steps for cleaning are required. Assembled with 

an automated system, the component parts have no contact to potential pollu-

tion sources, as persons. Minifactory also was developed under the criterion of 

clean room application. Since the cleaning steps cease to apply, solely the ac-

tual assembly operations have to be considered. 

In the first assembly step, lens element #4 (Figure 9) is inserted into the colli-

mator housing. Thereon, the lens is fixed with retainer ring #4 which is 

screwed in a thread. After that, lens element #3 is placed and fixed with re-

tainer ring #3 similarly – the pickup operation of this ring is displayed in Figure 

18. In the next step, lens element #2 is inserted, followed by the spacer and 

lens element #1. In a final step the retainer ring #1 is screwed in.  
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Figure 18: Pickup operation of the retainer ring #3 
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3.2.4.3 Writing the Program 

Now, the assembly steps described in paragraph 3.2.4.2, have to be trans-

formed into a program. The program lines are inserted in the OSTI fac-file un-

der the matrixes of the robot agents (Source code 1). Program commands af-

fecting the manipulator are added to the manipulator code, commands affect-

ing the first courier added to the code of the first courier and so on. As already 

mentioned in chapter 2.1, the courier and the manipulator agents have to co-

operate to accomplish operations requiring more than two DOFs. To simplify 

the programming of these co-operations, manipulators take over the control of 

the couriers they are cooperating with. Thus, every command referring to a co-

operative operation is added to the manipulator code. By including the follow-

ing commands in the courier code, the courier transfer the control to a manipu-

lator agent: 

 

initiateRendevous(self, ”MX”, ”tag”): This command blocks the 

courier until the manipulator named “MX” is ready to accept a rendezvous 

named “tag”. 

reserve(self, ”MX”): This command appoints the manipulator named 

“MX” the control is transferred to. 

performRendevous(self): This command turns over the control to the 

manipulator. 

endRendevous(self): This command orders the courier to leave its clear-

ance/working space and finishes the cooperation.  

unreserve(self, ”MX”): This command releases the courier from the 

control of the manipulator “MX”. 

 

On the part of the involved manipulator, two commands have to be inserted. 

Between those two command lines the other move commands for the courier-

manipulator cooperation are written: 

 



OSTI Project: Assembly of Telescopic Sight 

39 

acceptRendevous(self, ”tag”): This command checks for pending ren-

dezvous tags and unblocks the script, if a tag is found. 

finishRendevous(self): This command finishes the rendezvous and 

blocks the script until the courier has left the manipulator’s working space. 

 

In the present case, it is not possible to integrate all assembly steps in a single 

rendezvous as there are two couriers in alternate cooperation. Thus there are 

three kinds of rendezvous:  

1. The rendezvous between the manipulator and the part and tool handling 

courier for picking up the component parts. 

2. The rendezvous between the manipulator and the courier with the colli-

mator housing for placing the component parts. 

3. The rendezvous between the manipulator and the part and tool handling 

courier for placing the tool and - unless it is not the final assembly step - 

picking up the next component part. 

 

Beside the presented commands, Interface Tool provides other commands 

that manage rendezvous. As these other commands are only necessary for 

the programming of factories with more than one manipulator, they are not 

mentioned here.  

Before generating the program, the assembly operations (3.2.4.2) have to be 

divided into motion sequences. Below, this division is show by means of the 

assembly operation for fixing the retainer ring #4:   

1. Moving second courier from home position to manipulator. 

2. Picking up retainer tool #4 and retainer ring #4 at once and pulling back 

end effector. 

3. Moving second courier aside. 

4. Moving first courier from home position to manipulator. 

5. Placing retainer ring #4 in collimator housing.  

6. Screwing retainer ring #4. 

7. Pulling back end effector. 

8. Moving first courier aside. 
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9. Moving second courier to Manipulator. 

10. Placing retainer tool #4 back into its fixture and pulling back end effector. 

The other product components are assembled in a similar way, except that the 

lens elements and the spacer do not require a screwing sequence.  

 

The first step of the OSTI simulation is filling the fixtures of both couriers with 

the collimator components. For this task the Interface Tool sim environment 

provides an own command. With createPart(self, “part_name.aaa”, 

“part_fixture_name”, 0), iv-files which are embedded in aaa-files, can 

be displayed at any place in the virtual environment, which is marked by a “fix-

ture”. In this case, the “fixtures” are defined in the aaa-files of the couriers. Af-

ter appearance of the product parts, the assembly operations are performed. 

The most important action command in this simulation program is coord-

MoveTo(self, depth, x, y, z, th, speed, blooking). This com-

mand works only within a rendezvous cooperation and can control both the 

courier and the manipulator at the same time. The arguments X and Y deter-

mine the courier position, whereas Z defines the distance between end effec-

tor and platen, and theta (th) the angularity. Since the sim simulation does not 

display the behavior of the physical OSTI factory, the screwing operation was 

reduced to a simple rotation of the end effector without considering the change 

of the Z axis affected by the thread lead. 

In the final step of the OSTI simulation, the two couriers move back to their 

home position, the first one carrying a completely assembled collimator, the 

second one carrying the pick-up tools. To make the simulation more demon-

strative, it was decided to replace the original iv-file of the collimator housing 

with an iv-file containing the image of a cut in a halve collimator housing. The 

osti.fac file is displayed in appendix: A OSTI Files. 

 

3.3 Further Development of the OSTI Project 
In the next project step, the actual pick, place and screwing operations which 

are performed by the physical factory agents, are programmed. When pro-
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gramming the screwing process of the real manipulator, the dependency be-

tween rotation of the end effector and the position of the Z axis caused by the 

thread lead has to be considered. For the picking and placing operations, the 

vacuum and compressed air supply of the tools have to be controlled precisely 

so that the collimator components can be grasped and released at the right 

moment in the program. The acceleration and retardation as well as the posi-

tion detection of the robot agents have to be integrated into control instructions 

for the real factory, too. This project step was handled by the team members 

who were responsible for the physical factory agents. 

In the final step, the results of the two previous steps were combined in a pro-

gram that can be uploaded to the physical factory agents and displays a syn-

chronously running virtual version of the real OSTI Minifactory. This program is 

written in the tool environment, since sim environment does not provide the 

ability to communicate with the physical machines. Like the sim program, it 

bases on the virtual factory as created in section 3.2.3.3. Instead of sim spe-

cific commands, tool commands are included in the agents’ code. The tool and 

sim commands differ in many respects. There are also co-operations between 

courier and a manipulator agents in the tool environment, but here, the as-

signment of tasks is interchanged. The courier agent takes over the manipula-

tor’s control. In general, tool does not offer such a large 

number of ready-made commands, and the arguments of the provided com-

mands bear more reference to the mechanical functionality of the physical 

agents. Thus in some cases, commands have to be developed for special 

tasks.  

The complete tool OSTI program is displayed in appendix: A.2 Tool: 

osti.fac. 

The last project step, described above, was managed by all team members.  

At the end of the OSTI project, a virtual version of the physical OSTI factory 

that can perform the collimator assembly in a simulation, as well as the control 

program for the physical Minifactory were obtained. 
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4 ZYVEX Project: Precision Assembly of MEMS 
Parts 

 
ZYVEX Corporation, Richardson, Texas, USA is a molecular nanotechnology 

company that supplies tools, products and services which enable adaptable 

and molecularly precise manufacturing (ZYVEX 2007). The customer base of 

ZYVEX includes branches of industry like Aerospace/Defense, Elec-

tronic/semiconductor and Medical/HealthCare industries. 

A main focus of ZYVEX is microscale assembly of MEMS parts. ZYVEX de-

velops software for commercial MEMS technologies, processes for manufac-

turing MEMS parts and assembly techniques for MEMS structures (Figure 19). 

The project MLS handled in cooperation with ZYVEX deals with the assembly 

of these MEMS structures. 
 

 
                                                                                                         ZYVEX Corporation 

Figure 19: Example of a 3D MEMS structure 
 
4.1 Definition of MEMS 
Micro-Electro-Mechanical System (MEMS) stand for the integration of me-

chanical elements, sensors, actuators and electronics on a common silicon 

substrate through microfabrication technology (Memscap 2007). The electronic 
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elements are fabricated using common integrated circuits (IC) process se-

quences. To create the micromechanical components, compatible “micro-

machinig” processes are used that selectively etch away parts of the silicon 

wafer or add new structural layers to form the mechanical and electrome-

chanical devices (Memscap 2007). Thus, a complete system can be merged 

on a single chip. While the integrated microelectronic circuits connect and con-

trol the system elements, the sensors, mechanical elements and actuators en-

able a MEMS to interact with its environment. Information about thermal, me-

chanical, chemical, biological, magnetic and optical phenomena are registered 

by the sensors and afterwards processed by the electronic elements. Then, 

the output signals of the “mini controller” direct the actuators to respond by 

moving and controlling the environment. For instance, the actuator response 

can comprise positioning, pumping and regulating. The benefits of this ap-

proach are obvious. On smallest area an entire system can be placed that 

combines the computational ability of microelectronics with the precision and 

control capabilities of microsensors and microactuators. Thus, the possible 

designs and applications are numerous. Furthermore, the manufacturing costs 

are relatively low, because of the use of batch fabrication techniques (Mem-

scap 2007). Application areas of MEMEs are, for example, Biotechnology (Po-

lymerase Chain Reaction Microsystems), Communications (RF-MEMS tech-

nologies), Automotives (accelerometers for airbags) or Office Technologies 

(micronozzles in inkjet printers) (MEMS and Nanotechnologie Exchange 

2007). 

 

4.2 Three-dimensional Microassembled Systems 
The ability to built 3D microassembled systems creates unique capabilities and 

potential opportunities within the already broad range of applications based on 

MEMS devices and may develop new application areas (Tsui 2004). The fabri-

cation of true 3D structures cannot be accomplished by common micromachin-

ing techniques. For many commercial devices, monolithic fabrication may be 

the easiest and most profitable method of manufacturing 3D systems, but as 
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soon as dissimilar materials within the structure’s elements are required, other 

manufacturing methods have to be used. Thus, some level of assembly is in-

evitable. There have been several approaches to assemble 3D microstruc-

tures in the past. For instance, hinged structures, plastic deformation assembly 

techniques, assembly using surface tension forces and fluidic self-assembly 

are employed to assemble these kinds of structures (Tsui 2004). The first 

three methods have the disadvantage that the parts to be assembled have to 

be in close proximity of where they were fabricated. The fluidic self assembly, 

which does not have this constraint, cannot guarantee a controllable orienta-

tion of the structure. To avoid these problems, ZYVEX developed a more gen-

eral directed pick and place microassembly that allows exact positioning of 

structure elements that can be fabricated in several different processes.  

Currently, the assembly of micro scale objects requires a high degree of time 

consuming manual labor. For that reason, the packaging and assembly of 

MEMS components often account for a significant part of the costs and reduce 

the overall yield (Ellis 2002). ZYVEX tries to tackle this cost problem by auto-

mating as many process steps of their microassembly method as possible. 

 

4.3 ZYVEX Assembly Method 
The approach ZYVEX developed for microassembly of 3D MEMS is a combi-

nation of two ideas. On the one hand, the components of the MEMS have a 

special design that eases the join proceeding, on the other hand, ZYVEX de-

veloped a robot to perform the assembly.  

 

4.3.1 Microcomponent Design 
The ZYVEX microassembly principle bases on 3D MEMS structures to be 

constructed of microconectors (Figure 20 a). That means that one of the join 

partners owns connectors, the other one a kind of a socket, and both together 

build a force/form-locked join. The part’s connectors are inserted into the 

sockets and then fixed. Usually, several microconnectors are inserted into a 
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base that provides a socket for each element. The arrangement of the sockets 

define the layout of the MEMS structure (Figure 20 b+c).  
 

 
a) b) c)                       ZYVEX Corporation 

Figure 20: a) Magnification of the connection, b)+c) 3D MEMS structures 
 
In some cases, the microconnectors themselves feature sockets to hold other 

microconnectors. An important component of the ZYVEX assembly concept is 

the “zero insertion force” strategy (Ellis 2002). This strategy implies, that there 

is no force needed to insert the microconnector into the socket. Instead of 

snapping in place, the microconnectors are first put on the socket and then 

fixed in the next step. Thus, no force is required for the insertion and the risk of 

destroying components by applying too high forces or by incorrect insertion 

can be avoided. After putting the microconnector in the socket, the end effec-

tor that handled the part before spreads the legs of the microconnector which 

then snap into the locking notch of the socket. The design of the socket-

connector couple provides self-centering and self-alignment capabilities. For 

this reason, the placing needs not be hundred per cent precise, neither needs 

the assembly system. 

The assembly is described in all its particulars with an example in section 

4.4.1.2. 

 

4.3.2 Micro Assembly Robotic System 
The current robotic assembly system used for the pick and place operation 

consist of a five DOF robotic system (Ellis 2002). The system is composed 

primarily of five Newport stages and is schematically shown in Figure 21. The 

assembly substrate is moved by three stages in X, Y and around the Z axis 

(Θ). The motion towards and away from the substrate is performed by a Z 
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stage. Linked to that Z stage is the φ stage that rotates about an axis around 

parallel to the XY plane of motion. Different micro grippers can be attached to 

the end effector arm that is placed to the φ stage. A precision of one micro me-

ter is provided by close loop control systems for all five stages. 
 

 
                                                                                   ZYVEX Corporation 

Figure 21: ZYVEX 5 DOF robotic system 
 
For the grasping operation, ZYVEX embarks on two different strategies. On 

the one hand, ZYVEX developed active end effectors. These micro grippers 

allow to grasp micro components in a controlled manner. Different actuation 

principles including electrothermal, electrostatic and piezoelectric techniques 

are used to open, respectively close the opposing arms (Tsui 2004). The parts 

to be handled with micro grippers have to show points of contact where the 

gripper can take hold and where it can spread the legs to fix the parts. On the 

other hand, passive end effectors (Figure 22) were developed that do not fea-

ture moving parts and do not require separate control. In this case the match-

ing of micro parts and end effectors is even more important than when using 

micro grippers. Since the passive end effectors are reduced to a simple in-

flexible tip, compliant elements have to be integrated into the micro parts. 

There are several advantages over the micro gripper approach. One benefit is 

the robustness of the passive end effectors. They have a low structural fragility 
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and can withstand higher forces than active tools. Micromanipulation using a 

passive end effector also eliminates dependence on actuator displacement 

and thus reduces control complexity. As their design is comparatively simple, 

there is enough space for force sensing systems. Embedded piezoelectric 

elements can be used to built force feedback loops. For these reasons a pas-

sive end effector was chosen for this project.  
 

 
                                                                                        CMU 

Figure 22: Passive end effector 
 
4.4 ZYVEX-Minifactory Cooperation 
Though ZYVEX has already developed a fully functional production system to 

fabricate 3D MEMS structures, there is an interest in alternative solutions that 

feature advantages over the existing system. Apart from the already men-

tioned benefits of AAA of chapter 2.2, Minifactory provides the required accu-

racy and the possibility of serial production. The existing system with the five 

DOF robots only allows serial production by paralleling many of these robot 

units. An assembly line cannot be set up with the ZYVEX system. Because of 

the very small range of the ZYVEX robots, sockets and the storage of the mi-

cro parts always have to be on the same wafer. With Minifactory, the wafers 

that contain the micro parts can be retained on one courier agent, the wafer on 

which the MEMS structures are built on another. This arrangement permits the 

flow-through manufacturing approach of Minifactory, as opposed to the more 

traditional work cell methods of microassembly (Hollis 2006). Since the ZYVEX 

robot cannot perform the assembly in an open loop system, calibration of this 

system is critical for automated assembly and necessary to overcome several 

cumulative sources of misalignment. Before the assembly can start, a manual 
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calibration of the workpiece, as well as a manual calibration of the end effector 

is required (Tsui 2003). The calibration process is time-consuming and causes 

additional costs. Minifactory, however, can perform the assembly, due to clev-

erly devised sensor system (including the camera mounted on the new end 

effector), in closed loop and can adapt automatically to small inaccuracies. 

 

For these reasons, ZYVEX decided to examine to what extent Minifactory can 

meet the demands the production of 3D MEMS structures require. Accord-

ingly, a virtual Minifactory which is able to process these 3D MEMS structures 

is created in the first step of this project. 

 

4.4.1 Micro Parts for the ZYVEX Project 
To demonstrate Minifactory’s ability to build 3D MEMS structures, an assembly 

task was chosen that contains the general demands. The demonstration con-

sists of the pick up operation of a typical microconnector that is then placed in 

a socket. A micro mirror that is an element of micro interferometers and of 

other optical micro devices serves as demonstration sample. In the following 

paragraph, all product parts are described. 

 

4.4.1.1 End effector/Jammer 

As already mentioned in section 4.3.2. a passive end effector is used for the 

Minifactory demonstration. The used end effector, also referred to as jammer, 

belongs to the new generation of passive end effectors. Contrary to the single 

crystal silicon jammers, this implementation (Figure 22) has built-in force sen-

sors. It can detect out-of-plane forces with an integrated piezoresistive half-

bridge in areas of high stress low stress concentrations.  

 

4.4.1.2 Micro Mirror/Socket couple 

The micro mirror (Figure 23 a) belongs to the part family that is designed for 

the handling with passive edeffectors. Batch fabrication methods, which are 
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common in the production of MEMS parts, are used to manufacture the micro 

mirrors. With these techniques, a large number of components can be pro-

duced simultaneously. Like all wafer scale fabrication techniques, well ordered 

arrays of components with known positions can be produced. The last point is 

especially important for automated assemblies. The mirrors and sockets are 

fabricated in a 50 µm thick single crystal silicon (SCS) deep reactive ion 

etched (DRIE) process on a six inch silicon-on-isolator (SOI) wafer (Tsui 

2004). The production process includes a backside DRIE through the 600 µm 

handle. Nitride filled trenches in the single 50 µm thick structural layer provide 

in-plane electrical isolation (Tsui 2004). For electrical contacts, evaporated 

gold layer depositions are used. Since the components are assembled after 

fabrication, fully released micro mirrors are required. To keep the controlled 

orientation, which results from the fabrication process, as well as the easy 

availability for the jammer the parts are tethered to the substrate by a thin 

compliant flexure (Figure 23 a). This flexure prevents the mirrors from floating 

away and maintain accurate component palletization (Tsui 2004). Before pick-

ing up a micro mirror, the tether that anchors it to the device layer has to be 

broken. Unlike with the use of active end effectors, where the tethers have to 

be broken manually and the parts then placed in the work piece holder, the 

robust jammer can also be used for a breaking operation as part in an auto-

mated assembly sequence. For breaking the compliant tether structure, the tip 

of the end effector is lowered into a void in the structural layer and translated 

in-plane till it contacts, deflects and breaks the tether. 

The design of the micro mirrors was matched to the used passive end effector. 

The design of micro mirror can be roughly sectioned into two parts (Figure 23 

a). One part consists of a plain that is coated with a mirror surface and pro-

vides the functionality demanded from the 3D MEMS structure. The second 

part has the role to connect the micro part with the substrate. The connector 

part consists of three interleaving pairs of beams. The innermost pair, also re-

ferred to as compliant handles, is very flexible and allows the rounded end ef-

fector tip to move between. Like springs, the compliant handles press against 

the tip and thus the friction between handles and tip is high enough that the 
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micro mirror can be lifted by the end effector. The middle beam pair consists of 

two legs with two attached feeds. During the assembly, the feeds are inserted 

in the socket, and snap in its locking notches. After putting the micro mirror’s 

feet into the socket the passive end effector keeps on pushing down until it 

leaves the compliant handle zone and enters the wedge-shaped part of the 

legs. By further lowering of the end effector, its tip has to pass the chamfers 

and spreads the legs at the same time. Only by spreading the legs, the feet 

can snap into the socket. The outer beam pair, also named anchor arms, aid in 

realizing the part from the end effector and ensures that the micro mirror is 

level upon insertion into the socket.  
 

 

a) b) 

Figure 23: a) Tethered micro mirror, b) Socket 
 
The socket (Figure 23 b) is fabricated the same way like the micro mirror – 

since the ZYVEX micro assembly method only works if microconnectors and 

sockets are part of the same wafer. In the middle of the socket there is the re-

ceptacle opening, where the connector feet can be placed without resistance. 

On both sides of the opening there are each a pair of compliant flexures with 

locking notches. When the connectors’ feet are spread, they pass the locking 

notches and snap in after the connectors’ legs unbend.  
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The cooperation of the jammer, micro mirror and socket is displayed in Figure 

24. 

  

Figure 24: Assembly principle of the micro mirror 
 
This connecting principle works for all micro components, handled with a jam-

mer. For this reason, it is enough to use only one microconnection model to 

demonstrate the qualification of Minifactory for assembling MEMS structures.  

 

4.4.2 Task Analysis 
At the end of this project, an operating virtual Minifactory that assembles micro 

mirrors has to be set up. Since this project is confined to a virtual factory ver-

sion to the time being, it is not accomplished by a team. The author of this the-

sis is in charge of project progression. 

The ZYVEX project can be partitioned into the following work packages: 

1. Designing of the MEMS parts and the jammer. 

2. Modifying the Pro/E files to adapt them to the requirements of the Inter-

face Tool. 

3. Transferring the part files to the Interface Tool and transforming them to 

virtual objects. 

4. Creating the ZYVEX manipulator. 

5. Programming an additional axis for the manipulator. 

6. Designing a virtual Minifactory  

7. Programming the virtual Minifactory. 

 

4.4.3 Designing of the MEMS Parts and the Jammer 
Unfortunately, ZYVEX could not deliver the CAD files for the micro compo-

nents in time. To avoid a delay in the project schedule, the CAD files were re-

 = 
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designed in Pro/E. The Pro/E files are modeled on drawings in ZYVEX docu-

ments. By measuring the drawings, which had an attached scale, and using 

information about the components’ size, the parts could be reconstructed. Of 

course, it had to be considered that the jammer has to fit to the micro mirror 

and the mirror to the socket. Thus, the parts’ dimensions and proportions had 

to be adapted until the three parts matched perfectly up. 

Since the dimensions of all used parts are within the µm/mm scale, a close 

observation of the assembly site during the simulation was unavoidable. By 

zooming so close, all details of the components will be visible. Thus, it was de-

cided to take over all details, even the letters on the micro mirror. 

After designing the single components, their wafer environment had to be cre-

ated. 

For the wafer no prototypes exist, because ZYVEX always places all different 

microconnectors, sockets and calibration elements on a single wafer. By 

studying several images of wafers that contain among other parts the micro 

components used in this project, the usual grouping of these parts were found. 

In the ZYVEX Minifactory, sockets and mirrors are stored on two different cou-

rier agents. This means that two different wafers have to be designed. The first 

wafer contains 32 sockets arranged in two 4x4 patterns, which are shifted by 

90 degrees. This arrangement was chosen, because on the already existing 

ZYVEX wafers the sockets are often grouped in several  lines of each four 

pieces. With the 90 degree shift, Minifactory can demonstrate that like with the 

ZYVEX assembly system the micro components can be placed in any angle. 

The second wafer contains the micro mirrors. In the center of the wafer, 100 

mirrors are stored in a 10x10 pattern. Though the existing ZYVEX wafer fea-

tures not so many micro mirrors, their arrangement was adapted to the new 

wafer. The mirrors are always placed multi- or at least double-row and in each 

second row the mirrors are turned 180 degrees. Like on the original wafers, 

the micro mirrors are tethered to the substrate. 

To allow the grasping and placing operation in the simulation, the micro com-

ponents have to be put into separate files. That means, the wafers cannot be 

designed as a whole but as templates with gaps for the micro mirrors and al-
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ternatively for the sockets. Since after breaking the tether is not any longer a 

part of the mirror, the tether flexures are implemented as parts of the wafer 

frame. 

To obtain a better contrast when the micro mirrors are plugged to the sockets, 

the two wafers were colored in two slightly different hues. 

 

4.4.4 Modification and Adaptation of the Pro/E Files 
Like in the OSTI project, the Pro/E files have to be modified so that they can 

be transferred to the Interface Tool. In this case, the component parts do not 

have to be abstracted to eliminate needless details, because during the design 

process decisions about details have already been made. The same applies to 

the choice of the place for the point of origin of the parts’ coordinate systems. 

Beside the micro components, there are other new Pro/E files. For the ZYVEX 

project, a new effector mechanism has been developed by MSL that is sup-

posed to bear the passive end effector (Figure 25). 
 

 
 

Figure 25: ZYVEX effector mechanism with attached jammer 
 
It has already been designed and manufactured before Interface Tool was in-

troduced into the project. As the physical effector mechanism differs from its 

Pro/E version, the Pro/E file has to be adapted to guarantee a hundred per 

cent matching. The differences occurred because of modifications of the real 

effector mechanism. Furthermore, many unnecessary details have to be elimi-

nated to reduce the computing power for the rendering process during the 
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simulation. Since the components of the effector mechanism are relative com-

plex and rangy, some elements are deleted completely, others were replaced 

by redesigned and simplified versions. 

Also, the coordinate system’s origin of the moving component of the effector 

mechanism has to be replaced. The new origin is placed where the tip of the 

passive end effector will be located, so that programming of the new rotating 

axis is simplified. In the last step of the effector mechanism modification proc-

ess, the newly designed passive end effector is assembled to the effector 

mechanism. 

After preparing the Pro/E files for the requirement of the Interface Tool, they 

are converted into iv-files. Also in this project, the choice of the iv-files resolu-

tion must be well considered to avoid the requirement of too high computing 

power on the one hand, and to obtain a nice appearance of the parts in the 

simulation on the other hand. 

 

4.4.5 Transformation of the Parts Files to Virtual Objects  
The first step after the file transfer is to change the unit in all iv-files from inch 

to mm, as Minifactory bases on the metric system. As already mentioned in 

section 4.4.3, the micro mirrors on the wafer can be orientated in two ways. 

The two versions only differ in a 90 degree rotation about the Z axis. To sim-

plify the integration in the aaa-file of the courier, two different mirror iv-files are 

created by changing the rotation matrix of the original iv-file. 

Like in the OSTI project, new courier aaa-files have to be created whenever 

new mountings are attached to standard couriers. Due to the lack of informa-

tion about the design of the die holders, the wafers are placed directly on the 

courier cube surface. In this project, not only the iv-files of the wafers but also 

the socket and micro mirror iv-files are integrated in the courier aaa-file. Since 

the sockets and micro mirrors are inherent parts of the wafers, they should al-

ways be visible and not appear after the simulation starts. All iv-files have to 

be added under the fixture line in the courier aaa-file. By doing this, the iv-files 

are automatically attached as a mounting to the virtual courier in the simula-

tion. The iv-file name, an arbitrary fixture name and the coordinates of its posi-
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tion relative to the couriers’ origin of each part have to be itemized. Unfortu-

nately, the structure of the courier aaa-files does not allow to integrate loop 

functions in their fixture section. Thus, the information of each micro mirror re-

spective to each socket has to be added manually to the files.  

After generating two new couriers, they are added to the component palette so 

that their data can be retrieved in the GUI of Interface Tool. In the next step, 

the new couriers are included into the sim simulation environment and 

checked for orientation and position failures. These failures can be fixed by 

changing the position matrix of the iv-files of the used components. Finally pic-

tures from the couriers are taken in the sim environment to obtain gif-files for 

the thumbnails in the component palette pop-up window.  

The new effector mechansim, the passive end effector is equipped with, can-

not be attached to a standard manipulator the same way like the vacuum tool 

of the OSTI project. The ZYVEX effector mechansim features a movable part 

that should be controllable by the Interface Tool. How the effector mechanism 

is integrated into the simulation is described in the following section. 

 

4.4.6 Creating the ZYVEX Manipulator 
To assemble the micro mirrors, they are removed from the substrate using the 

passive end effector, rotated 90°(Figure 26) and inserted into the proper re-

ceptacle. The result is a micro mirror attached perpendicular to the substrate. 
 

 

Figure 26: Rotation of the micro mirror with the ZYVEX effector mechanism 
 
The existing Minifactory, both the physical and the virtual version, does not 

offer a way to rotate the mirror horizontally. While the existing DOFs include 

linear movements in the X-Y-plane (courier), up and down movements along 

the Z axis (manipulator) and rotatory movements about the Z axis (manipula-
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tor), a horizontal rotation is not practicable. To handle the new assembly task, 

another axis has to be added. The most logical and also the least laborious 

way is to develop an attachment for the standard manipulator end effector that 

includes this additional axis. 
 

4.4.6.1 Physical Version of the ZYVEX Manipulator 

Since the connection interface between manipulator and end effector offers 

many controllable electrical links, it is no problem to equip a driven axis The 

physical version of the effector mechanism is pictured in Figure 27.  
 

 

Figure 27: New end effector with attached effector mechanism 
 
A friction capstan that is driven by a small gear motor with incremental de-

coder and is rolling on a precision arc-shaped guideway effects a controlled 

rotation of +/-47.5 degrees (Hollis 2006). The rotation resolution is approxi-

mately 0.09 degrees and the speed approximately 15°/s. To place the tip of 

the MEMS jammer near the center of the microscope’s field of view, the rotat-

ing member part, also referred to as carriage, is equipped with a small manual 

three axis translation stage and small angular adjustment features (Hollis 

2006).  
 

4.4.6.2 Virtual Version of the ZYVEX Manipulator 

For the planned ZYVEX simulation and as basis for future programming of the 

physical ZYVEX Minifactories, the effector mechanism has to be implemented 
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into Interface Tool. At first, a new manipulator has to be generated with an end 

effector that contains the ZYVEX effector mechanism.  

 

Before going about the generation of the new manipulator, a lot of investiga-

tion had to be made. The data files of all already created virtual Minifactories 

and of their robot agents were inspected. Also the Python and C++ data files 

of all existing agents were examined and compared with each other. The result 

of the investigation can be summarized as follows. Since Interface Tool exists, 

no other movement axis had been added to a manipulator. Furthermore, the 

structure of Interface Tool offers no special options for the extension to addi-

tional axes/DOFs. 

Basically, there are five different types of virtual robot agents. There is the 

group of overhead manipulators whose members are modified versions of the 

standard manipulator. The modifications usually consist of the attachment of 

different end effectors and tools. The same principle applies for the couriers. 

They only differ in their project specific mountings and sometimes in the cou-

rier’s cube design. The other three agent types are purpose-built items and not 

as flexibly applicable as the standard agents. On the one hand, there is a laser 

welding agent with two laser cannons welding objects in their laser beam in-

tersection points and a UV hardener, which hardens adhesives by radiation. 

Both agents do not feature an additional DOF. On the other hand, there is an 

elevator-courier-magazine combination. With this combination, courier can be 

refilled automatically with larger product components. The elevator courier 

moves under a magazine column and lifts its platform to the column whereon a 

product part is placed. This elevator courier is the only agent with three 

controllable DOFs. Its additional Z axis can act as a guide for the development 

of the horizontal axis of the ZYVEX effector mechanism. Since the layout of 

the couriers’ data files is quite different from that concerning the manipulator 

agents and since in the case of the courier a linear and not an additional rota-

tory axis was implemented, the guidance is limited. At least this example could 

present a rough guideline for the implementation of the new axis.  
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The development of the new manipulator was an iterative process. According 

to the TOTE (Test Operate Test Exit) procedure, the written data is tested in 

the GUI of the Interface Tool, modified and tested again until the result meets 

the expectation. 

 

In the first attempt, the arc-shaped guideway of the effector mechanism has 

already been assembled in the Pro/E environment to the new standard end 

effector with the built-in camera system. This means that after the conversion 

of the Pro/E file to the iv-format, the guideway is an inherent part of the end 

effector iv-file. Thereafter, the iv-file was embedded in an end effector aaa-file. 

The iv-file of the carriage of the effector mechanism was added to the gripper 

section in the identical aaa-file. This solution allows to pick up and place the 

micro mirrors, but after some testing it turned out that it offers no potential for 

creating a moving command for the horizontal axis. Although this attempt 

failed, the created ZYVEX manipulator can be used to obtain a thumbnail pic-

ture for the component palette pop-up window. 

 

To understand how to create a virtual manipulator with a operating horizontal 

axis, the structure of the agents’ data files has to be examined. All robot 

agents, regardless of which type, are implemented as described below. 

Each agent is defined in a C++ file called FoAgentDesc.cc. Together with its 

header file (FoAgentDesc.h) it determines of which parts the agent consists 

and how the agent is built up. It also defines the relation between the agent 

components. The Desc.h-file is included in the FoProgAgentInterface.cc file 

that defines the interface to a simulated agent which can be directed by a Py-

thon script. 

Thus, it appears that for the ZYVEX effctor mechanism, a new agent type has 

to be created. This means that among other files, a new Desc-file has to be 

written. Since the new agent bases on the standard manipulator agent and 

only differs in an additional motional-axis, the new file consists of a subclass of 

the standard manipulator Desc-file that inherit the components of the standard 

manipulator and the effector mechanism’s parts in addition. By subclassing, 
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the amount of work can be reduced and risk of failures can be limited. The re-

lation between standard courier and elevator courier can be used as a source 

of information. 

First, the header file of the Desc-file has to be written. It contains the class 

FoZYVEXManipulatorDesc, which is a subclass of FoManipulatorDesc from 

the standard manipulator header file (which again is a subclasses of the gen-

eral agent’s Desc-class). In this class, Descriptionfields of the effector mecha-

nism’s components and fields for the value margining of the carriage are de-

fined. In the next step, the actual Desc-file is started. Here, content is assigned 

to the fields and member relations are determined, e.g. the guideway is a 

member of the end effector and the carriage a member of the guideway. Since 

this agent is destined for a particular project, a feature for changing the end 

effector or the tool is not necessary. That is why the iv-files of the effector 

mechanism are added directly to the manipulator aaa-file and not as usual to 

the end effector aaa-file. Accordingly, apart from the aaa-file of the new stan-

dard end effector, the ZYVEX manipulator aaa-file contains the iv-files of the 

end effector mechanism’s components. To create the ZYVEX manipulator 

aaa-file, the aaa-file of the standard manipulator can serve as template. Be-

sides an extension with the iv-files, only the interface link has to be changed 

from ProgManipulatorInterface to ProgZYVEXManipulatorInterface. The gen-

eration of the ZYVEX Interface-files are described in the following section. 

Even though the components of the effector mechanism are solely integrated 

in the manipulator aaa-file, information about the location of the tool tip (in this 

case the tip of the jammer) has to be specified in the end effector aaa-file, be-

cause the grasp and drop commands access the information about the tip lo-

cation in this file. After coding the ZYVEX manipulator, the new aaa-file is 

added to the component palette. The FoZYVEXManipulatorDesc.h and FoZY-

VEXManipulatorDesc.cc files can be found in appendix: B.3 FoZYVEXMa-

nipulatorDesc.h, B.4 FoZYVEXManipulatorDesc.cc. 
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4.4.7 Programming an Additional Axis for the Manipulator 
Writing the FoZYVEXManipulatorDesc files was the first step for implementing 

the fifth axis of freedom in the virtual Minifactory. So far, there is only a new 

virtual manipulator that exists but cannot operate in a simulation. Below, re-

quirements are listed the manipulator’s functionality has to fulfill: 

• Up- and down-movements of the end effector and the tool along the Z 

axis 

• Rotatory movements of end effector and tool about the Z axis 

• Rotatory movements of the carriage of the effector mechanism about a 

horizontal axis 

• Combination of the three movements  

• Controllable velocity of all axes 

• Grasping of parts 

• Rotation of the grasped parts about the horizontal axis 

• Dropping parts in every angle 

The following diagram shows the files that have to be created to obtain an op-

erating virtual ZYVEX manipulator. Furthermore, the connection between the 

files is displayed. 
 

 

Figure 28: ZYVEX files schema 

FoProgZYVEXManipulatorInterface.cc

FoProgZYVEXManipulatorInterface.h

ZYVEX.fac 

ProgZYVEXManipulator.py FoZYVEXManipulatorDesc.cc 

FoZYVEXManipulatorDesc.h 

ZYVEX_courier.aaa 

ZYVEX_courier.iv ZYVEX_end effector.aaa 

ZYVEX_end effector.iv 

ZYVEX_manip.aaa 
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After creating the iv-, aaa- and Desc-files that determine the appearance of the 

new agent, the files have to be written that describe its behavior.  

The all defining program is the ZYVEX Interface-file (e.g. FoProgZYVEXMa-

nipulatorInterface in Figure 28). In this file the methods are defined that realize 

the movement of the manipulator. 

Since the ZYVEX manipulator differs from the standard manipulator only in the 

additional DOF, the Interface-file of the standard manipulator can provide the 

basis for the ZYVEX Interface-file. Although it would be possible to integrate 

the new functionality in the existing standard manipulator program, it was de-

cided to create an extra file. By this it is easier to keep a well structured pro-

gram layout. Beside the already existing abilities like moving, grasping and 

making rendezvous with a courier, the capability to move the carriage has to 

be part of the new program.  

The best way to integrate the features of the standard manipulator into the 

new program is to form a subclass of the master class (FoProgManipula-

torInterface) of the existing manipulator program. This subclass (FoProgZY-

VEXManipulatorInterface) automatically contains all variables and methods 

needed for the features the standard manipulator offers. The derived class 

presents the master class of the ZYVEX Interface program and has to be 

completed with member variables and member functions that are necessary to 

control the additional axis. In the following, the most important functions of the 

new class are described: 

• carriageGet: This function recalls the current position of the simulated 

carriage. 

• moving: This function checks if the simulated carriage is currently mov-

ing. 

• carriageSet: This function sets the carriage to the next position. 

• start_carriage: This function starts the trajectory. 

• moveCarriage: This function moves the carriage to the arrival position 

at chosen velocity. 
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• move_carriage: This function provides the command for the Python 

programming environment. 

• update: This function updates the ZYVEX manipulator interface and 

delivers/gets information to/from the carriageGet/carriageSet function. 

 
Beside the main class, there is the class CarriagePointList that creates a FIFO 

(First In First Out) queue of points being tracked by the simulated carriage. 

This point queue is the basis for the master class’s functions. Figure 29 shows 

the components of the FoProgManipulatorInterface class and the element re-

quired for the added functionality. 

 

Figure 29: Class FoProgManipulatorInterface and additional Methods for ZY-
VEX project 

 
In the next step, a py-file has to be written that contains the new command for 

controlling the carriage. This file is the connection between the Interface-file 

which executes the actions and the fac-file that regulates the simulation 

course. Since the newly created ZYVEX manipulator also requires the already 

existing commands of the standard manipulator, the py-file of the standard 

manipulator has to be imported.  

Move-Methods: 
- moveTo 
- deltaMoveTo 
- coordMoveTo 
- reMoveTo 
- ... 

Rendezvous-Methods: 
- acceptRendevous 
- finishRendevous 
- getRendevousRequest 
- flushRendevousRequest 
- ... 

Tool-Methods:
- grasp 
- drop 
- toolgrasp 
- tooldrop 
- ... 

Parameter-interaction Methods:
- set 
- get 
- getPartnerName 
- getMaxAngularVelocity 
- ... 

Parameters 
- position 
- velocity 
- pointsId 
- maxOmega 
- ... 

Rotation-Methods:
- move_carriage 
- grasp 
- drop 
 

Class FoProgManipulatorInterface 
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All discussed ZYVEX files can be found in the appendix section B. 

In the final step, the just created files have to be placed in several folders in 

the path of the Interface Tool. As long as all files are not debugged or/and are 

not correctly located in the Interface Tool, the ZYVEX manipulator does not 

work, or in the worst case does not appear in the simulation at all.  

 

4.4.8 Designing a virtual Minifactory 
After creating the ZYVEX manipulator, all components that are necessary for 

the factory set up are available. Similar to the OSTI factory, the ZYVEX factory 

consists of one unit composed of: 

1x base frame + base unit 

1x platen tile  

1x bridge 

6x curb elements 

1x ZYVEX overhead manipulator 

2x standard courier modules with customized attachments 
 

 

Figure 30: Set up of the virtual ZYVEX Minifactory 
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The Minifactory components are assembled in the GUI of the Interface Tool. 

Since this factory is not modeled on an existing real factory, the components 

do not have to be placed at predefined locations and the laborious manual in-

put of position coordinates is omitted. The layout of this Minifactory (Figure 30) 

resembles the OSTI factory.  

On both sides of the base frame, a courier brain box is attached. The bridge 

with the ZYVEX manipulator clamped in its center is assembled in the middle 

of the base frame. 

 

4.4.9 Programming the Virtual Factory 
The job of this Minifactory is to pick up micro mirrors from one wafer, rotate 

them 90° and place them perpendicular on the other wafer. Before generating 

the program, the assembly progress has to be planned. Below the sequence - 

divided into work steps -for the assembly of one mirror is displayed: 

1. move first courier to manipulator 

2. lower jammer to the tether until it breaks and pulling back end effector 

3. grasp micro mirror and pulling back jammer 

4. rotate jammer +90° 

5. move first courier aside 

6. move second courier to manipulator  

7. place micro mirror in socket 

8. lower jammer until microconnector legs snap into socket and jammer tip 

stops touching the micro mirror  

9. back the jammer tip out of the micro mirror opening 

10. pull back end effector 

11. move second courier aside 

12. rotate jammer –90° 
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Figure 31: Detach and pick up of a micro mirror 
 

  

  

Figure 32: Placing and fixing of a micro mirror 
 
The described assembly sequence shows the basic proceeding. Depending on 

the position of the micro mirrors and sockets on the wafers, additional rotatory 

movements of the end effector might be necessary. In the simulation, 32 micro 

mirrors are assembled, as this is the number of available sockets on the sec-

ond courier. 

After saving the designed ZYVEX factory, the GUI is closed and the ZYVEX 

fac-file is opened in a compiler environment. In the next step, the action com-

mands have to be integrated into the agents’ code. The complete zyvex.fac file 
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can be found in appendix: B.8 zyvex.fac. Like in the OSTI program, the struc-

ture of this program is composed of rendezvous co-operations between the 

manipulator and the couriers. In these rendezvous, the manipulator takes con-

trol over one of the couriers and forms a five DOF robot. Beside the standard 

commands, like coordMoveTo, the newly created command moveCar to con-

trol the carriage is used. Since the simulation consists of 32 almost identical 

assembly sequences, loops are suited for structuring the program. By using 

loops, the number of program lines can be reduced and the program is more 

clearly arranged. 

Due to the task division being inherent in the rendezvous concept of the Inter-

face Tool, all program lines concerning the actual assembly operation are part 

of the ZYVEX manipulator code. The command lines of the courier consist 

only of a few commands that initiate and finish the rendezvous. To be sure that 

the couriers are always ready to form a co-operation with the manipulator, their 

part of the rendezvous commands is framed in a while-loop. By setting “1” for 

the while argument, the condition is always met and the couriers start after 

every finished rendezvous inquiring for the next one. The commands for the 

manipulator are framed in a for-loop which is run through 32 times. As already 

mentioned, the assemble sequence is not exactly the same for every micro 

mirror. In some cases, extra moves of the end effector are required. To con-

sider these variations of the standard sequence, if-else-conditions are added 

within the for-loop. With these conditions, the additionally required commands 

are integrated into the assembly sequence whenever it is necessary. 

Currently, only a virtual version of the ZYVEX Minifactory exists. That means 

unlike the OSTI project, the simulation is stand-alone and does not synchro-

nously display the operations a physical factory performs. Thus the time trig-

gering is not affected by physical machines but is hard-coded. To obtain a 

realistic simulation, one’s attention has to be turned to a proper choice of the 

velocities of the trajectories. For instance, feed motions are realized in rapid 

traverse while sensible motions are accordingly realized more slowly.  

The result of this project is an operating virtual Minifactory that assembles 32 

micro mirrors. 
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Figure 33: Mirror wafer and jammer tip 

 

 

4.4.10 Outlook on the ZYVEX Project 
After the ZYVEX project has been finished successfully, there are several pos-

sibilities for the future of ZYVEX-AAA cooperation. Since a physical version of 

the effector mechanism already exists, a real factory modeled on the just cre-

ated virtual version could be set up. To realize the physical factory, real retain-

ers for the wafers would have to be designed and mounted on the couriers. 

Furthermore, test series with the built-in sensors of the jammer would have to 

be accomplished to control the tether breaking operation. Similar to the OSTI 

project, a program in the tool environment would have to be written and up-

loaded to the physical factory agents. Another possibility would be to upgrade 

the existing virtual factory. ZYVEX developed a jammer that consists of sev-

eral parallel tips and can pick up and place many parts at once. Thus, the Mini-

factory could operate more efficiently. To use the newly developed jammer, 

the effector mechanism and the wafer layout would have to be modified. As 

the current virtual ZYVEX Minifactory is a test set up to demonstrate the quali-
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fication of AAA’s Minifactory for handling MEMS, a more realistic version could 

be programmed. A virtual Minifactory that assembles a complete MEMS struc-

ture could be created. The microconnector system, ZYVEX developed, applies 

for all micro components which are designed for a handling with a passiveend 

effector. For that reason, the newly created ZYVEX manipulator could be used 

for the assembly of other micro components, too. 

A virtual Minifactory could be set up which consists of several units and agents 

and assembles 3D MEMS structures that consist of many components.  

In the end, a direct comparison of the physical Minifactory and the ZYVEX five 

DOF robot system will decide on the future of AAA’s Minifactory with the ZY-

VEX Corporation. Both systems have to assemble a similar item and the as-

sembly quality and quantity have to be checked. 

In any case, Minifactory is predestined for assembly task like the one pre-

sented in this work and has the potential to revolutionize the segment of micro 

assembly. 
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5. Summary and Conclusion 
 
Before attending to the actual projects, Interface Tool had to be reconditioned 

and upgraded. The transfer to a new computer system could not be performed 

without damage. Thus, in the beginning bugs had to be corrected and missing 

files and libraries had to be provided. After refitting the Interface Tool, the first 

project could be started. A virtual Minifactory for the assembly of telescopic 

sights was designed and a simulation was created. The programming of the 

physical factory is based on this virtual factory. During this project, problems 

that were not foreseeable before the project start had to be solved. In general, 

this project presented a good preparation for the ZYVEX project. By using al-

ready developed Minifactory components in the first assembly project, this part 

of the work could be used to acquire more knowledge about the Interface Tool. 

Thus, in the second project, already familiar with all prerequisites, the main 

attention could be turned to the expansion of the Interface Tool’s functionality. 

To assemble the MEMS with Minifactory, a fifth DOF had to be implemented in 

the virtual environment of Interface Tool. To do this, the C++ source code of 

the Interface Tool had to be modified and supplemented. Before proceeding 

with the next step, the entire structure of the Interface Tool had to be analyzed 

and understood. After adding the extra movement axis, a virtual Minifactory 

was generated that picks up micro components, rotates them via the new DOF 

and places them perpendicular to the original orientation. That way, 3D MEMS 

structures can be built. The result of this project is not only an operating virtual 

Minifactory that assembles MEMSs, but also an reassessment of the entire 

Minifactory system. The fifth degree of freedom grants access to the MEMS 

industry, representing also an opportunity for the Minifactory to address prob-

lems not approachable before. 

 

5.1 Future Work and Outlook 
Since Interface Tool, especially the functionality of the GUI, still has not 

achieved its original condition on the Silicon Graphics machine, there is still 
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some repair work left. Once Interface Tool is in complete working order again, 

virtual factories and simulations can be created in shorter time and in a more 

convenient way. In general, it is always favorable to develop the component 

palette of Interface Tool. Every additional factory module, especially robot 

agents, extend the field of application. With every further project, new end ef-

fectors and assembly tools or even new robot agents are added to the compo-

nent library of the Interface Tool. 

By the time Interface Tool can provide all planned functionalities and the test 

stage has been finished, the sim and tool environments can be replaced by a 

single programming environment. Which would offer the capability to design 

and simulate factories and generate programs for the physical factories at the 

same time. 

Efficient physical Minifactory modules in combination with a user-friendly soft-

ware system and the agility concept will ensure a wealth of users. 

Once Minifactory is established, several different manufacturers can design 

Minifactory modules with standardized hardware and software interfaces and a 

variety of robot agents will be available. Manufacturers, specialized in certain 

assembly techniques can combine there know-how with the concept of AAA 

and Minifactory and offer virtual and physical robot agents. Due to shorter 

product live cycles, Minifactories will be in a constant alteration. Thus modules 

which fall into disuse can be stocked or sold while required modules can be 

purchased newly or second-hand. 

In the near future Minifactory could be a novel assembly system that changes 

the current way of fabrication in many branches of industry.  
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A OSTI Files  
 

A.1 Sim: osti.fac 
 
file base_frame.aaa { 
    children { 
        file lg_platen.aaa { 
 
# naming platen so that later it can be defined on which platen the couriers move: 
            name P1                          
 
            matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 570 1 ] 
        } 
 
#################### courier C1 ###################################### 
 
        file Osti_courier_1.aaa { 
 
# naming the courier: 
            name CS1                                                              
 
matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 450 -330 655 1 ] 
 
# reference to py-file containing the command definitions: 
            program {from progCourier import *                        
 
while 1: 
 
# adding the collimator housing to the simulation: 
               createPart(self,"collimator.aaa","screwFixture-0",0)   
 
# courier C1 transfers its control to manipulator M1 for the period of the ren-
#dezvous operation "Collimaator4a": 
               initiateRendevous(self, "M1", "Collimator4a")   
               reserve(self, "M1") 
               performRendevous(self)                                 
               endRendevous(self)                                     
               unreserve(self, "M1")                                  
 
# move C1 to home position: 
               goTo(self,"P1",200,-400)                               
 
               initiateRendevous(self, "M1", "Collimator4b") 
               reserve(self, "M1") 
               performRendevous(self) 
               endRendevous(self) 
               unreserve(self, "M1") 
 
               goTo(self,"P1",200,-400) 
 
       
               initiateRendevous(self, "M1", "Collimator3a") 
               reserve(self, "M1") 
               performRendevous(self) 
               endRendevous(self) 
               unreserve(self, "M1") 
 
               goTo(self,"P1",200,-400) 
 
      initiateRendevous(self, "M1", "Collimator3b") 
               reserve(self, "M1") 
               performRendevous(self) 
               endRendevous(self) 
               unreserve(self, "M1") 
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               goTo(self,"P1",200,-400) 
 
    
               initiateRendevous(self, "M1", "Collimator2a") 
               reserve(self, "M1") 
               performRendevous(self) 
               endRendevous(self) 
               unreserve(self, "M1") 
 
               goTo(self,"P1",200,-400) 
 
      initiateRendevous(self, "M1", "Collimator2b") 
               reserve(self, "M1") 
               performRendevous(self) 
               endRendevous(self) 
               unreserve(self, "M1") 
 
               goTo(self,"P1",200,-400) 
 
    
               initiateRendevous(self, "M1", "Collimator1a") 
               reserve(self, "M1") 
               performRendevous(self) 
               endRendevous(self) 
               unreserve(self, "M1") 
 
               goTo(self,"P1",200,-400) 
 
      initiateRendevous(self, "M1", "Collimator1b") 
               reserve(self, "M1") 
               performRendevous(self) 
               endRendevous(self) 
               unreserve(self, "M1") 
 
               goTo(self,"P1",200,-400) 
 
       
} 
            member home { 
                matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 -450 330 15 1 ] 
            } 
            member motor { 
                matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 158.518 -447.676 0 1 ] 
            } 
        } 
        file Osti_courier_2.aaa { 
 
 
#################### courier C2 ###################################### 
 
# naming the courier: 
            name CS2                                                                        
 
            matrix [ -0.999989 -1.50994e-07 -1.16675e-22 0 1.50994e-07 -0.999989 
6.84564e-08 0 -1.40427e-13 6.8457e-08 1 0 -450 163.955 655 1 ] 
 
# reference to py-file containing the command definitions: 
            program {from progCourier import *                                              
 
while 1: 
 
              sleep(self,0.5)                                                              
# adding the collimator components to the simulation: 
              createPart(self,"element_1.aaa","element_1_fixture",0)                        
              createPart(self,"element_2.aaa","element_2_fixture",0 )                       
              createPart(self,"element_3_4_doublet.aaa","element_34_fixture",0)            
# 
              createPart(self,"element_5.aaa","element_5_fixture",0)                        
              createPart(self,"lock_ring_el_1.aaa","ring_1_fixture",0)                      



OSTI Files 

77 

              createPart(self,"lock_ring_el_3.aaa","ring_34_fixture",0)                     
              createPart(self,"lock_ring_el_5.aaa","ring_5_fixture",0)                      
              createPart(self,"spacer_el_1_2_ver2.aaa","spacer_fixture",0)                  
              sleep(self,1) 
 
# add the pick-up tools to the simulation: 
              creat-
Part(self,"vacuum_pickup_tool_lens_el1.aaa","element_1_fixture",1)                     
              create-
Part(self,"vacuum_pickup_tool_lens_el2.aaa","element_2_fixture",1) 
              create-
Part(self,"vacuum_pickup_tool_lens_el3_4.aaa","element_34_fixture",1)  
              create-
Part(self,"vacuum_pickup_tool_lens_el5.aaa","element_5_fixture",1)    # 
              createPart(self,"ringtool_1.aaa","ring_1_fixture",1)                         
              createPart(self,"ringtool_2.aaa","spacer_fixture",1)                         
              createPart(self,"ringtool_3.aaa","ring_34_fixture",1)                        
              createPart(self,"ringtool_5.aaa","ring_5_fixture",1)                         
 
# courier C2 transfering its controll to manipulator M1 for the period of the 
ren#dezvous operation "Lens_4": 
              initiateRendevous(self, "M1", "Lens_4")                                     
              reserve(self,"M1")                                                       
              performRendevous(self)                                                        
              endRendevous(self)                                                            
              unreserve(self, "M1")                                                         
 
# moving C1 to home position 
              goTo(self,"P1",-200,-400)                                                     
 
              initiateRendevous(self, "M1", "tool4a") 
              reserve(self,"M1") 
              performRendevous(self) 
              endRendevous(self) 
              unreserve(self, "M1") 
 
              goTo(self,"P1",-200,-400) 
 
              initiateRendevous(self, "M1", "Retainer_4") 
              reserve(self,"M1") 
              performRendevous(self) 
              endRendevous(self) 
              unreserve(self, "M1") 
     
              goTo(self,"P1",-200,-400) 
 
              initiateRendevous(self, "M1", "tool4b") 
              reserve(self,"M1") 
              performRendevous(self) 
              endRendevous(self) 
              unreserve(self, "M1") 
 
              goTo(self,"P1",-200,-400) 
 
              initiateRendevous(self, "M1", "Lens_3") 
              reserve(self,"M1") 
              performRendevous(self) 
              endRendevous(self) 
              unreserve(self, "M1") 
     
              goTo(self,"P1",-200,-400) 
 
              initiateRendevous(self, "M1", "tool3a") 
              reserve(self,"M1") 
              performRendevous(self) 
              endRendevous(self) 
              unreserve(self, "M1") 
 
              goTo(self,"P1",-200,-400) 
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              initiateRendevous(self, "M1", "Retainer_3") 
              reserve(self,"M1") 
              performRendevous(self) 
              endRendevous(self) 
              unreserve(self, "M1") 
     
              goTo(self,"P1",-200,-400) 
 
              initiateRendevous(self, "M1", "tool3b") 
              reserve(self,"M1") 
              performRendevous(self) 
              endRendevous(self) 
              unreserve(self, "M1") 
 
              goTo(self,"P1",-200,-400) 
 
              initiateRendevous(self, "M1", "Lens_2") 
              reserve(self,"M1") 
              performRendevous(self) 
              endRendevous(self) 
              unreserve(self, "M1") 
     
              goTo(self,"P1",-200,-400) 
 
              initiateRendevous(self, "M1", "tool2b") 
              reserve(self,"M1") 
              performRendevous(self) 
              endRendevous(self) 
              unreserve(self, "M1") 
 
              goTo(self,"P1",-200,-400) 
 
              initiateRendevous(self, "M1", "Spacer") 
              reserve(self,"M1") 
              performRendevous(self) 
              endRendevous(self) 
              unreserve(self, "M1") 
     
              goTo(self,"P1",-200,-400) 
 
              initiateRendevous(self, "M1", "tool2b") 
              reserve(self,"M1") 
              performRendevous(self) 
              endRendevous(self) 
              unreserve(self, "M1") 
 
              goTo(self,"P1",-200,-400) 
 
              initiateRendevous(self, "M1", "Lens_1") 
              reserve(self,"M1") 
              performRendevous(self) 
              endRendevous(self) 
              unreserve(self, "M1") 
     
              goTo(self,"P1",-200,-400) 
 
              initiateRendevous(self, "M1", "tool1a") 
              reserve(self,"M1") 
              performRendevous(self) 
              endRendevous(self) 
              unreserve(self, "M1") 
 
              goTo(self,"P1",-200,-400) 
 
              initiateRendevous(self, "M1", "Retainer_1") 
              reserve(self,"M1") 
              performRendevous(self) 
              endRendevous(self) 
              unreserve(self, "M1") 
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              goTo(self,"P1",-200,-400) 
 
              initiateRendevous(self, "M1", "tool1b") 
              reserve(self,"M1") 
              performRendevous(self) 
              endRendevous(self) 
              unreserve(self, "M1") 
 
              goTo(self,"P1",-200,-400) 
 
 
} 
            member home { 
                matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 -450.005 163.957 14.9999 1 ] 
            } 
            member motor { 
                matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 156.115 441.65 -1.90735e-05 1 ] 
            } 
        } 
        file bridge.aaa { 
            matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 0 147.233 920 1 ] 
            member crossbar { 
                matrix [ 1 0 0 0 0 1 1.46125e-15 0 0 -1.46099e-15 1 0 -3.57628e-05 
1.89761e-06 96.0405 1 ] 
                children { 
 
 
#################### manipulator ##################################### 
 
                    file Osti_manip.aaa { 
 
# naming the courier: 
                        name M1                                       
 
                        matrix [ -0.999994 2.16463e-09 1.54238e-16 0 4.23855e-08 -
0.999993 6.98763e-22 0 5.03578e-14 -1.82624e-13 1 0 4.10435 -39.9999 9.53675e-07 1 
] 
 
# reference to py-file containing the command definitions: 
                        program {from progManipulator import *        
 
while 1: 
 
############## lens element #4 ###################################### 
 
#cooperation between C2 and M: 
              acceptRendevous(self,"Lens_4")                           
 
# pick up part and tool at once: 
              coordMoveTo(self, 0, 50.8, 87.9882, 70, 0, 0.5)  
              coordMoveTo(self, 0, 50.8, 87.9882, 40, 0, 0.1)         
              grasp(self,2,'element_5_fixture')                       
              grasp(self,1,'element_5_fixture')                       
              coordMoveTo(self, 0, 50.8, 87.9882, 40, 0, 0.1)         
              coordMoveTo(self, 0, 50.8, 87.9882, 70, 0, 0.5)         
 
              finishRendevous(self) 
 
# cooperation between C1 and M: 
              acceptRendevous(self,"Collimator4a") 
# placing part: 
              coordMoveTo(self, 0, 0, 25.399, 85, 0, 0.5)            
              coordMoveTo(self, 0, 0, 25.399, 43.4848, 0, 0.1) 
              drop(self, 0,'screwFixture-0')                          
              coordMoveTo(self, 0, 0, 25.399, 50, 0, 0.1)             
              coordMoveTo(self, 0, 0, 25.399, 85, 0, 0.5)             
 
              finishRendevous(self) 
 
# cooperation between C2 and M: 
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              acceptRendevous(self,"tool4a") 
 
# placing tool: 
              coordMoveTo(self, 0, 50.8, 87.9882, 70, 0, 0.5)            
              coordMoveTo(self, 0, 50.8, 87.9882, 40, 0, 0.1)          
              drop(self, 0,'element_5_fixture')                       
              coordMoveTo(self, 0, 50.8, 87.9882, 40, 0, 0.1)         
              coordMoveTo(self, 0, 50.8, 87.9882, 70, 0, 0.5)         
              finishRendevous(self) 
 
############## retainer ring #4 #####################################               
                         
              acceptRendevous(self,"Retainer_4")  
              coordMoveTo(self, 0, -50.8, 87.9882, 70, 0, 0.5) 
              coordMoveTo(self, 0, -50.8, 87.9882, 40, 0, 0.1) 
              grasp(self,2,'ring_5_fixture') 
              grasp(self,1,'ring_5_fixture') 
              coordMoveTo(self, 0, -50.8, 87.9882, 40, 0, 0.1) 
              coordMoveTo(self, 0, -50.8, 87.9882, 70, 0, 0.5) 
 
              finishRendevous(self) 
 
              acceptRendevous(self,"Collimator4b")  
              coordMoveTo(self, 0, 0, 25.399, 85, 0, 0.5) 
              coordMoveTo(self, 0, 0, 25.399, 47.3267, 0, 0.1) 
              drop(self, 0,'screwFixture-0') 
              coordMoveTo(self, 0, 0, 25.399, 50, 0, 0.1) 
              coordMoveTo(self, 0, 0, 25.399, 85, 0, 0.5) 
 
              finishRendevous(self) 
 
              acceptRendevous(self,"tool4b")  
              coordMoveTo(self, 0, -50.8, 87.9882, 70, 0, 0.5) 
              coordMoveTo(self, 0, -50.8, 87.9882, 40, 0, 0.1) 
              drop(self, 0,'ring_5_fixture') 
              coordMoveTo(self, 0, -50.8, 87.9882, 40, 0, 0.1) 
              coordMoveTo(self, 0, -50.8, 87.9882, 70, 0, 0.5) 
  
              finishRendevous(self) 
 
############## lens element #3 ###################################### 
 
     acceptRendevous(self,"Lens_3")  
              coordMoveTo(self, 0, -25.4, 43.9941, 70, 0, 0.5) 
              coordMoveTo(self, 0, -25.4, 43.9941, 40, 0, 0.1) 
              grasp(self,2,'element_34_fixture') 
              grasp(self,1,'element_34_fixture') 
              coordMoveTo(self, 0, -25.4, 43.9941, 40, 0, 0.1) 
              coordMoveTo(self, 0, -25.4, 43.9941, 70, 0, 0.5) 
 
              finishRendevous(self) 
 
              acceptRendevous(self,"Collimator3a")  
              coordMoveTo(self, 0, 0, 25.399, 85, 0, 0.5) 
              coordMoveTo(self, 0, 0, 25.399, 58.4708, 0, 0.1) 
              drop(self, 0,'screwFixture-0') 
              coordMoveTo(self, 0, 0, 25.399, 60, 0, 0.1) 
              coordMoveTo(self, 0, 0, 25.399, 85, 0, 0.5) 
 
              finishRendevous(self) 
 
              acceptRendevous(self,"tool3a")  
              coordMoveTo(self, 0, -25.4, 43.9941, 70, 0, 0.5) 
              coordMoveTo(self, 0, -25.4, 43.9941, 40, 0, 0.1) 
              drop(self, 0,'element_34_fixture') 
              coordMoveTo(self, 0, -25.4, 43.9941, 40, 0, 0.1) 
              coordMoveTo(self, 0, -25.4, 43.9941, 70, 0, 0.5) 
  
              finishRendevous(self) 
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############## retainer ring #3 #####################################  
 
              acceptRendevous(self,"Retainer_3")  
              coordMoveTo(self, 0, 25.4, 43.9941, 70, 0, 0.5) 
              coordMoveTo(self, 0, 25.4, 43.9941, 40, 0, 0.1) 
              grasp(self,2,'ring_34_fixture') 
              grasp(self,1,'ring_34_fixture') 
              coordMoveTo(self, 0, 25.4, 43.9941, 40, 0, 0.1) 
              coordMoveTo(self, 0, 25.4, 43.9941, 70, 0, 0.5) 
 
              finishRendevous(self) 
 
              acceptRendevous(self,"Collimator3b")  
              coordMoveTo(self, 0, 0, 25.399, 85, 0, 0.5) 
              coordMoveTo(self, 0, 0, 25.399, 67.5202, 0, 0.1) 
              drop(self, 0,'screwFixture-0') 
              coordMoveTo(self, 0, 0, 25.399, 70, 0, 0.1) 
              coordMoveTo(self, 0, 0, 25.399, 85, 0, 0.5) 
 
              finishRendevous(self) 
 
              acceptRendevous(self,"tool3b")  
              coordMoveTo(self, 0, 25.4, 43.9941, 70, 0, 0.5) 
              coordMoveTo(self, 0, 25.4, 43.9941, 40, 0, 0.1) 
              drop(self, 0,'ring_34_fixture') 
              coordMoveTo(self, 0, 25.4, 43.9941, 40, 0, 0.1) 
              coordMoveTo(self, 0, 25.4, 43.9941, 70, 0, 0.5) 
  
              finishRendevous(self) 
 
############## lens element #2 ###################################### 
 
              acceptRendevous(self,"Lens_2")  
              coordMoveTo(self, 0, 25.4, -43.9941, 70, 0, 0.5) 
              coordMoveTo(self, 0, 25.4, -43.9941, 40, 0, 0.1) 
              grasp(self,2,'element_2_fixture') 
              grasp(self,1,'element_2_fixture') 
              coordMoveTo(self, 0, 25.4, -43.9941, 40, 0, 0.1) 
              coordMoveTo(self, 0, 25.4, -43.9941, 70, 0, 0.5) 
 
              finishRendevous(self) 
 
              acceptRendevous(self,"Collimator2a")  
              coordMoveTo(self, 0, 0, 25.399, 85, 0, 0.5) 
              coordMoveTo(self, 0, 0, 25.399, 72.9486, 0, 0.1) 
              drop(self, 0,'screwFixture-0') 
              coordMoveTo(self, 0, 0, 25.399, 75, 0, 0.1) 
              coordMoveTo(self, 0, 0, 25.399, 85, 0, 0.5) 
 
              finishRendevous(self) 
 
              acceptRendevous(self,"tool2a")  
              coordMoveTo(self, 0, 25.4, -43.9941, 70, 0, 0.5) 
              coordMoveTo(self, 0, 25.4, -43.9941, 40, 0, 0.1) 
              drop(self, 0,'element_2_fixture') 
              coordMoveTo(self, 0, 25.4, -43.9941, 40, 0, 0.1) 
              coordMoveTo(self, 0, 25.4, -43.9941, 70, 0, 0.5) 
  
              finishRendevous(self) 
 
############## spacer ############################################### 
 
              acceptRendevous(self,"Spacer")  
              coordMoveTo(self, 0, -25.4,-43.9941, 70, 0, 0.5) 
              coordMoveTo(self, 0, -25.4,-43.9941, 40, 0, 0.1) 
              grasp(self,2,'spacer_fixture') 
              grasp(self,1,'spacer_fixture') 
              coordMoveTo(self, 0, 25.4, 43.9941, 40, 0, 0.1) 
              coordMoveTo(self, 0, 25.4, 43.9941, 70, 0, 0.5) 
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              finishRendevous(self) 
 
              acceptRendevous(self,"Collimator2b")  
              coordMoveTo(self, 0, 0, 25.399, 85, 0, 0.5) 
              coordMoveTo(self, 0, 0, 25.399, 74.8337, 0, 0.1) 
              drop(self, 0,'screwFixture-0') 
              coordMoveTo(self, 0, 0, 25.399, 78, 0, 0.1) 
              coordMoveTo(self, 0, 0, 25.399, 85, 0, 0.5) 
 
              finishRendevous(self) 
 
              acceptRendevous(self,"tool2b")  
              coordMoveTo(self, 0, -25.4,-43.9941, 70, 0, 0.5) 
              coordMoveTo(self, 0, -25.4,-43.9941, 40, 0, 0.1) 
              drop(self, 0,'spacer_fixture') 
              coordMoveTo(self, 0, -25.4,-43.9941, 40, 0, 0.1) 
              coordMoveTo(self, 0, -25.4,-43.9941, 70, 0, 0.5) 
  
              finishRendevous(self) 
 
############## lens element #1 ###################################### 
 
              acceptRendevous(self,"Lens_1")  
              coordMoveTo(self, 0, 50.8,0, 70, 0, 0.5) 
              coordMoveTo(self, 0, 50.8,0, 40, 0, 0.1) 
              grasp(self,2,'element_1_fixture') 
              grasp(self,1,'element_1_fixture') 
              coordMoveTo(self, 0, 50.8,0, 40, 0, 0.1) 
              coordMoveTo(self, 0, 50.8,0, 70, 0, 0.5) 
 
              finishRendevous(self) 
 
              acceptRendevous(self,"Collimator1a")  
              coordMoveTo(self, 0, 0, 25.399, 85, 0, 0.5) 
              coordMoveTo(self, 0, 0, 25.399, 78.0517, 0, 0.1) 
              drop(self, 0,'screwFixture-0') 
              coordMoveTo(self, 0, 0, 25.399, 80, 0, 0.1) 
              coordMoveTo(self, 0, 0, 25.399, 85, 0, 0.5) 
 
              finishRendevous(self) 
 
              acceptRendevous(self,"tool1a")  
              coordMoveTo(self, 0, 50.8,0, 70, 0, 0.5) 
              coordMoveTo(self, 0, 50.8,0, 40, 0, 0.1) 
              drop(self, 0,'element_1_fixture') 
              coordMoveTo(self, 0, 50.8,0, 40, 0, 0.1) 
              coordMoveTo(self, 0, 50.8,0, 70, 0, 0.5) 
  
              finishRendevous(self) 
 
############## retainer ring #1 #####################################  
 
              acceptRendevous(self,"Retainer_1")  
              coordMoveTo(self, 0, -50.8, 0, 70, 0, 0.5) 
              coordMoveTo(self, 0, -50.8, 0, 40, 0, 0.1) 
              grasp(self,2,'ring_1_fixture') 
              grasp(self,1,'ring_1_fixture') 
              coordMoveTo(self, 0, -50.8, 0, 40, 0, 0.1) 
              coordMoveTo(self, 0, -50.8, 0, 70, 0, 0.5) 
 
              finishRendevous(self) 
 
              acceptRendevous(self,"Collimator1b")  
              coordMoveTo(self, 0, 0, 25.399, 85, 0, 0.5) 
              coordMoveTo(self, 0, 0, 25.399, 79.1747, 0, 0.1) 
              drop(self, 0,'screwFixture-0') 
              coordMoveTo(self, 0, 0, 25.399, 80, 0, 0.1) 
              coordMoveTo(self, 0, 0, 25.399, 85, 0, 0.5) 
 
              finishRendevous(self) 
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              acceptRendevous(self,"tool1b")  
              coordMoveTo(self, 0, -50.8, 0, 70, 0, 0.5) 
              coordMoveTo(self, 0, -50.8, 0, 40, 0, 0.1) 
              drop(self, 0,'ring_1_fixture') 
              coordMoveTo(self, 0, -50.8, 0, 40, 0, 0.1) 
              coordMoveTo(self, 0, -50.8, 0, 70, 0, 0.5) 
  
              finishRendevous(self) 
 
} 
 
                        member effectorLink { 
                            children { 
                            } 
                        } 
                        member base { 
                            matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 100 1 ] 
                        } 
                    } 
                } 
            } 
        } 
    } 
} 

 

 

A.2 Tool: osti.fac 
file base_frame.aaa { 
    children { 
        file lg_platen.aaa { 
            name P1 
            matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 570 1 ] 
        } 
        cached rat ipt:englishhorn.msl.ri.cmu.edu|1390,interface { 
            name CS1 
            matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 450 -330 655 1 ] 
            program { 
from OSTICourierProgram import OSTICourierProgram 
from FoDescription import FoDescriptionPtr 
import linear 
 
class Program(OSTICourierProgram): 
    def bind(self): 
        OSTICourierProgram.bind(self) 
#        self.collimator_proto = self.bindPrototype("Collimator") 
        self.collimatorhalf_proto = self.bindPrototype("Collimatorhalf") 
 
    def run(self): 
#        self.collimator = self.attachPart(self.collimator_proto, 
#                                          "screwFixture_0") 
        self.collimator = self.attachPart(self.collimatorhalf_proto, 
                                          "screwFixture_0") 
 
        # reset the courier's position to be offset (0,0) from the lower right 
        # platen corner 
        self.setHome(1, -1, 0.0, 0.0) 
 
        manip_intf = self.manip.getInterface() 
        self.manip_object = self.getProgramObject(manip_intf) 
 
        self.do_operation("Element5Place") 
 
        self.do_operation("Ring5Place") 
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        self.do_operation("Element34Place") 
 
        self.do_operation("Ring34Place") 
 
        self.do_operation("Element2Place") 
 
        self.do_operation("SpacerPlace") 
 
        self.do_operation("Element1Place") 
 
        self.do_operation("Ring1Place") 
 
        while 1: 
            self.sleep(0.2) 
 
    def do_operation(self, place_rendezvous): 
        print "Initiating" 
        self.initiateRendezvous(self.manip, place_rendezvous) 
 
        print "Coordinating" 
        fixture = FoDescriptionPtr(self.description.screwFixture_0) 
        mat = fixture.getLocalMatrix() 
        self.coordinateTo(self.manip_object, mat[3][0], mat[3][1]) 
        print "Finishing" 
         
        self.coordinateTo(self.manip_object, -200, 0) 
        print "Cleared" 
        self.finishRendezvous(place_rendezvous) 
         
 
program = Program() 
} 
            member home { 
                matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 -450 330 15 1 ] 
                children { 
                } 
            } 
            member motor { 
                matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 158.518 -447.676 0 1 ] 
                children { 
                } 
            } 
        } 
        cached vole ipt:englishhorn.msl.ri.cmu.edu|1391,interface { 
            name CS2 
            matrix [ -0.999989 -1.50994e-07 -1.16675e-22 0 1.50994e-07 -0.999989 
6.84564e-08 0 -1.40427e-13 6.8457e-08 1 0 -450 163.955 655 1 ] 
            program { 
from OSTICourierProgram import OSTICourierProgram 
from FoDescription import FoDescriptionPtr 
import linear 
 
class Program(OSTICourierProgram): 
    def bind(self): 
        OSTICourierProgram.bind(self) 
        self.element_1_proto = self.bindPrototype("Element1") 
        self.element_2_proto = self.bindPrototype("Element2") 
        self.element_3_4_doublet_proto = self.bindPrototype("Element34Doublet") 
        self.element_5_proto = self.bindPrototype("Element5") 
        self.lock_ring_el_1_proto = self.bindPrototype("LockRingElement1") 
        self.lock_ring_el_3_proto = self.bindPrototype("LockRingElement3") 
        self.lock_ring_el_5_proto = self.bindPrototype("LockRingElement5") 
        self.spacer_el_1_2_proto = self.bindPrototype("SpacerElements12") 
        self.vacuum_pickup_tool_lens_el1_proto = 
self.bindPrototype("VacuumPickupToolLensElement1") 
        self.vacuum_pickup_tool_lens_el2_proto = 
self.bindPrototype("VacuumPickupToolLensElement2") 
        self.vacuum_pickup_tool_lens_el3_4_proto = 
self.bindPrototype("VacuumPickupToolLensElement34") 
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        self.vacuum_pickup_tool_lens_el5_proto = 
self.bindPrototype("VacuumPickupToolLensElement5") 
        self.ringtool_1_proto = self.bindPrototype("RingTool1") 
        self.ringtool_2_proto = self.bindPrototype("RingTool2") 
        self.ringtool_3_proto = self.bindPrototype("RingTool3") 
        self.ringtool_5_proto = self.bindPrototype("RingTool5") 
 
    def run(self): 
        self.element_1 = self.attachPart(self.element_1_proto, "element_1_fixture") 
        self.element_2 = self.attachPart(self.element_2_proto, "element_2_fixture") 
        self.element_3_4_doublet = self.attachPart(self.element_3_4_doublet_proto, 
"element_34_fixture") 
        self.element_5 = self.attachPart(self.element_5_proto, "element_5_fixture") 
        self.lock_ring_el_1 = self.attachPart(self.lock_ring_el_1_proto, 
"ring_1_fixture") 
        self.lock_ring_el_3 = self.attachPart(self.lock_ring_el_3_proto, 
"ring_34_fixture") 
        self.lock_ring_el_5 = self.attachPart(self.lock_ring_el_5_proto, 
"ring_5_fixture") 
        self.spacer_el_1_2 = self.attachPart(self.spacer_el_1_2_proto, 
"spacer_fixture") 
        # note: pick better z-offsets here 
        self.vacuum_pickup_tool_lens_el1 = 
self.attachPart(self.vacuum_pickup_tool_lens_el1_proto, "element_1_fixture") 
        self.vacuum_pickup_tool_lens_el2 = 
self.attachPart(self.vacuum_pickup_tool_lens_el2_proto, "element_2_fixture") 
        self.vacuum_pickup_tool_lens_el3_4 = 
self.attachPart(self.vacuum_pickup_tool_lens_el3_4_proto, 
                        "element_34_fixture") 
        self.vacuum_pickup_tool_lens_el5 = 
self.attachPart(self.vacuum_pickup_tool_lens_el5_proto, "element_5_fixture") 
        self.ringtool_1 = self.attachPart(self.ringtool_1_proto, "ring_1_fixture") 
        self.ringtool_2 = self.attachPart(self.ringtool_2_proto, "spacer_fixture") 
        self.ringtool_3 = self.attachPart(self.ringtool_3_proto, "ring_34_fixture") 
        self.ringtool_5 = self.attachPart(self.ringtool_5_proto, "ring_5_fixture") 
 
        # reset the courier's position to be offset (0,0) from the lower right 
        # platen corner.  Remember "cornerness" is from point of view of the 
        # courier, which is upside-down in x-y relative to the other courier 
        # since it is mounted on the opposite side 
        self.setHome(1, 1, 0.0, 0.0) 
 
        manip_intf = self.manip.getInterface() 
        self.manip_object = self.getProgramObject(manip_intf) 
 
        self.do_operation("Element5Grab", [  self.vacuum_pickup_tool_lens_el5, 
                                             self.element_5 ], 
                          "element_5_fixture", "Element5Return") 
 
        self.do_operation("Ring5Grab", [ self.ringtool_5, 
                                         self.lock_ring_el_5 ], 
                          "ring_5_fixture", "Ring5Return") 
 
        self.do_operation("Element34Grab", [  self.vacuum_pickup_tool_lens_el3_4, 
                                             self.element_3_4_doublet ], 
                          "element_34_fixture", "Element34Return") 
 
        self.do_operation("Ring34Grab", [ self.ringtool_3, 
                                          self.lock_ring_el_3 ], 
                          "ring_34_fixture", "Ring34Return") 
 
        self.do_operation("Element2Grab", [  self.vacuum_pickup_tool_lens_el2, 
                                             self.element_2 ], 
                          "element_2_fixture", "Element2Return") 
 
        self.do_operation("SpacerGrab", [ self.ringtool_2, 
                                          self.spacer_el_1_2 ], 
                          "spacer_fixture", "SpacerReturn") 
 
        self.do_operation("Element1Grab", [  self.vacuum_pickup_tool_lens_el1, 
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                                             self.element_1 ], 
                          "element_1_fixture", "Element1Return") 
 
        self.do_operation("Ring1Grab", [ self.ringtool_1, 
                                         self.lock_ring_el_1 ], 
                          "ring_1_fixture", "Ring1Return") 
 
        print "Sleeping" 
        while 1: 
            self.sleep(0.2) 
 
    def do_operation(self, grab_rendezvous, products, fixture_name, 
                     return_rendezvous): 
        print "Initiating" 
        self.initiateRendezvous(self.manip, grab_rendezvous) 
        self.presentedProducts = products 
        print "Coordinating" 
        fixture = FoDescriptionPtr(self.description.get(fixture_name)) 
        mat = fixture.getLocalMatrix() 
        self.coordinateTo(self.manip_object, mat[3][0], mat[3][1]) 
        print "Finishing" 
        self.coordinateTo(self.manip_object, -150, 0) 
        print "Cleared" 
 
        self.finishRendezvous(grab_rendezvous) 
 
        self.initiateRendezvous(self.manip, return_rendezvous) 
 
        print "Coordinating" 
        fixture = FoDescriptionPtr(self.description.get(fixture_name)) 
        mat = fixture.getLocalMatrix() 
        self.coordinateTo(self.manip_object, mat[3][0], mat[3][1]) 
 
        self.finishRendezvous(return_rendezvous) 
 
 
     
 
program = Program() 
} 
            member home { 
                matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 -450.005 163.957 14.9999 1 ] 
                children { 
                } 
            } 
            member motor { 
                matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 156.115 441.65 -1.90735e-05 1 ] 
                children { 
                } 
            } 
        } 
        file bridge.aaa { 
            matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 0 147.233 920 1 ] 
            member crossbar { 
                matrix [ 1 0 0 0 0 1 1.46125e-15 0 0 -1.46099e-15 1 0 -3.57628e-05 
1.89761e-06 96.0405 1 ] 
                children { 
                    cached puma ipt:englishhorn.msl.ri.cmu.edu|1389,interface { 
                        name M1 
                        matrix [ -0.999994 2.16463e-09 1.54238e-16 0 4.23855e-08 -
0.999993 6.98763e-22 0 5.03578e-14 -1.82624e-13 1 0 4.10435 -39.9999 9.53675e-07 1 
] 
                        program { 
from OSTIManipProgram import OSTIManipProgram 
 
program = OSTIManipProgram() 
} 
                        member effectorLink { 
                            children { 
                            } 
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                        } 
                        member base { 
                            matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 100 1 ] 
                            children { 
                            } 
                        } 
                    } 
                } 
            } 
        } 
    } 
} 
file outercornercurb.aaa { 
    matrix [ -8.84336e-08 1 2.82723e-15 0 -1 -8.83553e-08 3.40823e-08 0 3.40823e-08 
-4.51566e-12 1 0 -297 -600 577.25 1 ] 
} 
file outercornercurb.aaa { 
    matrix [ -1 1.5353e-09 4.59664e-17 0 5.53562e-10 -1 7.18114e-15 0 1.56768e-16 -
2.12542e-14 1 0 300 -596.5 577.25 1 ] 
} 
file outercornercurb.aaa { 
    matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 -300 596.5 577.25 1 ] 
} 
file outercornercurb.aaa { 
    matrix [ 9.05718e-08 -1 -1.236e-15 0 1 9.57624e-08 3.41116e-08 0 -3.42113e-08 
3.87845e-09 1 0 297 600 577.25 1 ] 
} 
file shortcurb.aaa { 
    matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 0 -603.5 577.25 1 ] 
} 
file shortcurb.aaa { 
    matrix [ -1 -2.92803e-07 -6.61493e-09 0 2.14959e-10 -0.999999 -1.14458e-15 0 -
1.86728e-08 -2.04577e-08 0.999999 0 -1.34161e-05 603.5 577.25 1 ] 
} 
product element_5_proto.aaa 
product ringtool_3_proto.aaa 
product vacuum_pickup_tool_lens_el3_4_proto.aaa 
product lock_ring_el_5_proto.aaa 
product collimatorhalf_proto.aaa 
product ringtool_2_proto.aaa 
product spacer_el_1_2_ver2_proto.aaa 
product lock_ring_el_1_proto.aaa 
product element_1_proto.aaa 
product lock_ring_el_3_proto.aaa 
product vacuum_pickup_tool_lens_el1_proto.aaa 
product ringtool_5_proto.aaa 
product element_3_4_doublet_proto.aaa 
product element_2_proto.aaa 
product vacuum_pickup_tool_lens_el2_proto.aaa 
product vacuum_pickup_tool_lens_el5_proto.aaa 
product ringtool_1_proto.aaa 
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B ZYVEX Files 
 
B.1 zyvec_endeffector.aaa 
 
Effector { 
   view InventorView { 
             body { 
               File { 
                 name pureendeffector.iv 
               } 
             } 
   } 
 
      grippers ( 
                Link { 
                     num <Int> 2 
                     matrix [1, 0, 0, 0, 
                             0, 1, 0, 0, 
                             0, 0, 1, 0, 
                             0, 100.5961, -79.072, 1] 
   
                     mount {{0,0,-1}, {0,0,1}} 
      } 
      ) 
} 

 
 

B.2 zyvex_manipulator.aaa 
 
file common_zyvex_manip.aaa { 
 
     image file Zyvex_manip.gif 
  
     effector file test_endeffector.aaa {} 
 
     arc Component { 
        view InventorView { 
           body { 
            File { 
               name arcm.iv 
             } 
           }  
 } 
     } 
     carriage Component { 
        view InventorView { 
          body { 
           File { 
            name simpel_carriage_5.iv 
           } 
          } 
        } 
       matrix [1, 0, 0, 0, 
               0, 1, 0, 0, 
               0, 0, 1, 0, 
               0, 100.5815, -78.9458, 1] 
     } 
  
     interface ProgZYVEXManipulatorInterface { 
     } 
} 
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B.3 FoZYVEXManipulatorDesc.h 
 
////////////////////////////////////////////////////////////////////// 
// 
//                      FoZYVEXManipulatorDesc.h 
// 
// Define the FOZYVEXManipulator agent 
// 
// Classes define for export: 
//   FoZYVEXManipulatorDesc 
// 
////////////////////////////////////////////////////////////////////// 
 
#ifndef fo_zyvex_manipulator_h 
#define fo_zyvex_manipulator_h 
 
#include <AAA/descriptions/FoComponents.h> 
#include <AAA/descriptions/FoManipulatorDesc.h> 
#include <AAA/descriptions/FoCourierDesc.h> 
 
 
//class FoReservedDesc;   
 
class FoZYVEXManipulatorDesc : public FoManipulatorDesc { 
    FO_DESCRIPTION_HEADER(FoZYVEXManipulatorDesc); 
 
  public: 
    FoZYVEXManipulatorDesc(); 
 
    FoFloatField range;             // range of movement of the carriage 
    FoCargoMountPointField arcMount; // where to mount the arc 
    FoDescriptionField arc;          // runner of the carriage 
    FoDescriptionField carriage;     // the moving carriage 
 
    //    virtual FbBool moveMember(FoComponentDesc*); 
 
    static void initClass(); 
 
  private: 
    void setInterface(FoInterfaceBase*, FoInterfaceBase*); 
}; 
 
#endif  
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B.4 FoZYVEXManipulatorDesc.cc 
 
////////////////////////////////////////////////////////////////////////// 
// 
//                           FoZYVEXManipulatorDesc.cc 
// 
// Implement the FoZYVEXManipulatorDesc 
// 
// Classes implemented for export: 
//   FoZYVEXManipulatorDesc 
// 
////////////////////////////////////////////////////////////////////////// 
 
#include <AAA/descriptions/FoZYVEXManipulatorDesc.h> 
 
FO_DESCRIPTION_SOURCE(FoZYVEXManipulatorDesc); 
 
void FoZYVEXManipulatorDesc::initClass() 
{ 
    FO_DESCRIPTION_INIT_CLASS(FoZYVEXManipulatorDesc, "ZYVEXManipulator", 
"Manipulator"); 
} 
 
FoZYVEXManipulatorDesc::FoZYVEXManipulatorDesc() 
{ 
   FO_DESCRIPTION_CONSTRUCTOR(FoZYVEXManipulatorDesc); 
   FO_ADD_FIELD(range, 1.5707); 
   FO_ADD_FIELD(arcMount, FbCargoMountPoint()); 
   FO_ADD_SUBMEMBER_FIELD(arc, effector); 
   arc.setAttribute(FO_FIELD_NO_WRITING); 
   FO_ADD_SUBMEMBER_FIELD(carriage, arc); 
} 

 

 

B.5 FoProgZYVEXManipulatorInterface.h 
 
/////////////////////////////////////////////////////////////////////////////// 
// 
//                           FoProgZYVEXManipulatorInterface3.h 
// 
// Defines the interface to a simulated 3-axis manipulator agent which can be  
// directed by a python script 
// 
// Classes defined for export: 
//  FoProgZYVEXManipulatorInterface - the simulated, programmable manipulator in-  
//  terface 
// 
// Classes defined for internal use: 
//  FoComponentDesc 
//  CarriagePointList 
//   
///////////////////////////////////////////////////////////////////////////////// 
 
#ifndef fo_prog_zyvex_manipulator_interface_h  
#define fo_prog_zyvex_manipulator_interface_h  
 
#include "FoProgManipulatorInterface.h" 
 
#include <AAA/FbTime.h> 
 
class FoComponentDesc; 
class CarriagePointList; 
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class FoProgZYVEXManipulatorInterface : public FoProgManipulatorInterface { 
         FO_BASE_HEADER(FoProgZYVEXManipulatorInterface); 
 
  public: 
    FoProgZYVEXManipulatorInterface(); 
    virtual ~FoProgZYVEXManipulatorInterface(); 
 
    FoIntField isMoving;       // 1 if moving 
    FoFloatField carrMaxSpeed;  //maximum travel speed of the carriage 
     
    virtual void update();  
 
    void moveCarriage(float r, float speed, FoAction* = NULL); 
 
    virtual FbBool moving() const;   
 
    void carriageGet(float&); 
    void carriageSet(float); 
 
    static void initClass(); 
 
  private: 
    void setCompletionAction(FoAction*); 
    FbBool startCarriage(float); 
    void move_carriage(const char*); 
    void grasp(const char* params); 
    void drop(const char* params); 
 
    CarriagePointList* _carr_traj; // moving position list of carriage 
    FbBool _carr_moving;           // true if carriage is moving 
    float _carr_v;                 // current moving velocity 
    float _carr_r;                 // last "fixed" position 
    FbTime _carr_basetime;         // time that begin tracking 
    float _carr_steptime;          // forwardtime from current position to next   
                                   // point 
    int _max_capacity;              
}; 
#endif 

 

 

B.6 FoProgZYVEXManipulatorInterface.cc 
 
///////////////////////////////////////////////////////////////////////////////////
//////// 
// 
//                     FoProgZYVEXManipulatorInterface3.cc 
// 
// Implements the interface to a simulates xouroer agent whoch can be  
// directed by a physon script 
// 
// Classes implemented for export: 
//  FoProgZYVEXManipulatorInterface - the simulated, programmable manip. interface 
// 
// Classes implemented for internal use: 
//  CarriagePoint - a point tracked by the simulated ZYVEX Manipulator's carriage  
//  CarriagepointList - A class for the points being tracked by a simulated   
//                      ZYVEX Manipulator's carriage     
// 
/////////////////////////////////////////////////////////////////////////////////// 
 
#include "FoProgZYVEXManipulatorInterface.h" 
 
#include <AAA/AAA.h> 
#include <AAA/descriptions/FoComponents.h> 
#include <AAA/descriptions/FoZYVEXManipulatorDesc.h> 
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#include <math.h> 
#include <AAA/FbLinear.h>  
 
 
struct CarriagePoint {                                                                        
    FbVec2f point;        // the point to track (r,v)  
    FoAction* action;     // the action to take when we get to this point 
    CarriagePoint* next;  // the next point in the list 
}; 
 
// Aclass for a FIFO queue of the points for carriage tracking to update  
class CarriagePointList { 
   public: 
     CarriagePointList() { _head = _tail = NULL; } 
     ~CarriagePointList(); 
 
     CarriagePoint* pop();                         // pop a point off the head  
     void append(FbVec2f pt, FoAction* act);       // add a point to the tail 
     CarriagePoint* head() const { return _head; } // return whats at the head 
 
  private: 
     CarriagePoint* _head; // head of the point list 
     CarriagePoint* _tail; // tail of the point list 
}; 
 
//destroy a point list 
CarriagePointList::~CarriagePointList() 
{ 
    CarriagePoint* elem = _head; 
    CarriagePoint* doomed; 
    while (elem) { 
          doomed = elem; 
          if (elem->action) 
              elem->action->unref(); 
          elem = elem->next; 
          delete doomed; 
    } 
} 
 
//pop a point of the front of the list. If the list is empty, return NULL 
CarriagePoint* CarriagePointList::pop() 
{ 
    if (!_head) 
        return NULL; 
 
    CarriagePoint* res = _head; 
    _head = _head->next; 
    if (!_head) 
        _tail = NULL; 
 
    return res; 
} 
 
// append (r,v) and corresponding action to the end of the point list 
void CarriagePointList::append(FbVec2f pt, FoAction* act) 
{ 
     CarriagePoint* elem = new CarriagePoint; 
     elem->point = pt; 
     elem->action = act; 
     if (act) 
         elem->action->ref(); 
     elem->next = NULL; 
     if (_tail) 
         _tail->next = elem; 
     else 
         _head = elem; 
     _tail = elem; 
} 
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FO_BASE_SOURCE(FoProgZYVEXManipulatorInterface); 
 
void FoProgZYVEXManipulatorInterface::initClass() 
{ 
   FO_BASE_INIT_CLASS(FoProgZYVEXManipulatorInterface, 
                     "ProgZYVEXManipulatorInterface", "ProgManipulatorInterface"); 
} 
 
 
/////////////////////////////////////////////////////////////////////////////////// 
 
 
FoProgZYVEXManipulatorInterface::FoProgZYVEXManipulatorInterface() 
{ 
   FO_BASE_CONSTRUCTOR(FoProgZYVEXManipulatorInterface); 
 
   // set up carriage variables 
   _carr_traj = new CarriagePointList; 
   _carr_moving = FALSE; 
   _carr_r = 0; //11.26 
 
//   _max_capacity = 0; 
 
     FoFieldRestrictions* res = exportField("isMoving"); // 30.11 
 
     FO_ADD_FIELD(carrMaxSpeed, 2*M_PI); 
     res = exportField("carrMaxSpeed"); 
     res->writable.setValue(TRUE); 
 
    registerAction("grasp", 
                   new FoClassProgAction<FoProgZYVEXManipulatorInterface> 
                   (this, &FoProgZYVEXManipulatorInterface::grasp)); 
    registerAction("drop", 
                   new FoClassProgAction<FoProgZYVEXManipulatorInterface> 
                   (this, &FoProgZYVEXManipulatorInterface::drop)); 
   registerAction("moveCarr", 
                  new FoClassProgAction<FoProgZYVEXManipulatorInterface> 
                  (this, &FoProgZYVEXManipulatorInterface::move_carriage)); 
} 
 
FoProgZYVEXManipulatorInterface::~FoProgZYVEXManipulatorInterface() 
{ 
 
    CarriagePoint* point; 
    while (point=_carr_traj->pop()) { 
        if (point->action) 
            point->action->unref(); 
        delete point; 
    } 
    delete _carr_traj; 
} 
 
#define ABS(x) (((x) > 0) ? (x) : -(x)) 
 
// start the trajectory stored in the _points member variable, considering 
// that we should have started if head_start seconds ago. returns TRUE 
// if the trajectory is started successfully 
FbBool FoProgZYVEXManipulatorInterface::startCarriage(float head_start) 
{ 
     // if no point to track, return FALSE 
     CarriagePoint* target = _carr_traj->head(); 
     if (!target) 
         return FALSE; 
      
     // set the time at which we should have started  tracking 
     _carr_basetime = FbTime::getTimeOfDay() - FbTime(head_start); 
      
    // figure how far we have to go to the next point 
    float dest_r, speed_factor; 
    _carr_traj->head()->point.getValue(dest_r, speed_factor); 
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    while (dest_r > M_PI) 
        dest_r -= 2*M_PI; 
    while (dest_r < -M_PI) 
        dest_r += 2*M_PI; 
    float dr = dest_r - _carr_r; 
    _carr_traj->head()->point[1] =dest_r; ///eventuell [0] 
 
    // set r velocitie based on the longer travel time to achieve 
    // the desired r at the given speed 
    float rot_time = ABS(dr)/(carrMaxSpeed.getValue()*speed_factor); 
    if (rot_time < 0.00001) { 
        _carr_steptime = 0; 
        _carr_v = 0; 
    } else { // get there 
        _carr_v = dr/rot_time; 
        _carr_steptime = rot_time; 
    } 
 
    return TRUE; 
} 
 
// move the carriage to r at speed percentage of maximum. 
// invoke act when we are finished 
void FoProgZYVEXManipulatorInterface::moveCarriage(float displacement,  // neces-
sary? 
                                                   float speed, FoAction* act) 
{ 
   FbVec2f pt; 
   pt[0] = displacement; 
   pt[1] = speed; 
   _carr_traj->append(pt, act); 
 
   if (!_carr_moving) { 
       carriageGet(_carr_r); 
       startCarriage(0); 
       _carr_moving = TRUE; 
   } 
} 
 
// set the carriage to displacement r  
 
void FoProgZYVEXManipulatorInterface::carriageSet(float r) 
{ 
    if (!getDescription()->isOfType(FoZYVEXManipulatorDesc::getClassTypeId())) 
        return; 
    FoZYVEXManipulatorDesc* manipulator = (FoZYVEXManipulatorDesc*) getDescrip-
tion(); 
 
    FoDescription* carriage = manipulator->carriage.getValue(); 
    if (!carriage) 
       return; 
    FoDescription* base = manipulator->arc.getValue(); 
 
    FbVec3f t;  
    FbRotation o; 
    carriage->matrix.getValue().getTransform(t, o); 
 
     
 
 
    carriage->setPositiony(0,100.5815,-78.9458,r); // new function: setPositiony 
 
        if (!_carr_moving) { 
           _carr_r = r; 
          return; 
        } 
} 
// return TRUE if the effector is currently moving 
FbBool FoProgZYVEXManipulatorInterface::moving() const 
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{ 
     return _carr_moving; 
} 
 
    
 
 
// get the current position of the simulated carriage    
void FoProgZYVEXManipulatorInterface::carriageGet(float& r_out) 
{ 
     if (!_carr_moving) { 
         // if we are not moving, use the last position for where the effector is 
         r_out = _carr_r; 
         return; 
 
     } 
     // we are moving, so we have to figure out where the effector should be, 
     // not just where it is 
 
     // take first guess at where the effector should be, given the velocitie and 
     // the elapsed time 
     FbTime current = FbTime::getTimeOfDay(); 
     float elapsed = (current - _carr_basetime).getValue(); 
 
     r_out = _carr_r + _carr_v*elapsed; 
 
     // that guess will be wrong if the elapsed time is longer than the time 
     // we calculated it should take to get to the point we are aiming at 
 
     FoAction* action = NULL; 
     int reget = 0; 
     if (elapsed > _carr_steptime) { 
        // so, get the next point 
        CarriagePoint* target = _carr_traj->pop(); 
        // set our position to be at that point 
        _carr_r = target->point[0];  //evetuell [1] 
        if (!_carr_traj->head()) { 
           // if we are done with all points, stop the carriage 
           r_out = _carr_r; 
           _carr_moving = FALSE; 
        } else { 
           // else start the trajectory, taking into account we have 
           // overshot by a little bit 
           startCarriage(elapsed - _carr_steptime); 
           reget = 1; 
        } 
        action = target->action; 
        delete target; 
     } 
      
     // set the effector's position to the proper value 
     while (r_out > M_PI) 
         r_out -= 2*M_PI; 
     while (r_out < -M_PI) 
         r_out += 2*M_PI; 
     carriageSet(r_out); 
 
     if (action) { // if we need to execute an action 
         action->execute(); 
         action->unref(); 
     } 
     if (reget) // we do this here if we have just started a trajectory 
        carriageGet(r_out); 
}      
 
//update manipulator 
void FoProgZYVEXManipulatorInterface::update() 
{ 
     // update the manipulator interfacce 
     FoProgManipulatorInterface::update(); 
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     // update the carriage position 
     if (!_carr_moving) 
        return; 
     float r; 
     carriageGet(r); 
     carriageSet(r); 
} 
 
 
// Action for the "moveCarr" action tag 
// moveCarr r speed blocking 
// Move the carriage to r   
// at speed percentage of maximum. unblock at completion if blocking is 1 
void FoProgZYVEXManipulatorInterface::move_carriage(const char* params) 
{ 
    float r, speed; 
    int blocking; 
 
    if (sscanf(params, "%f %f %d" , &r, &speed, &blocking) != 3) { 
        printf("Programmed ZYVEX manipulator syntax error on '%s'\n", params); 
        return; 
    } 
     
    FoAction* action; 
    if (blocking) 
       action = new FoUnblockAction(this); 
    else 
       action = NULL; 
    moveCarriage(r, speed, action); 
} 
 
// action for the "grasp" action tag 
//  grasp depth  
// Transfer the reference of the object at depth from the motor of the 
// partnered courier to the gripper 
void FoProgZYVEXManipulatorInterface::grasp(const char* params) 
{ 
    int depth; 
    char fixture_name[100]; 
 
    printf("ZYVEX grasp %s\n", params); 
 
    if (!getDescription()->isOfType(FoManipulatorDesc::getClassTypeId())) { 
        printf("%s: Programmed manipulator not owned by a manipulator\n", 
               getDescription()->getName().getString()); 
        return; 
    } 
 
    if (sscanf(params, "%d %s", &depth, &fixture_name[0]) != 2) { 
        printf("%s: Progammed manipulator syntax error on '%s'\n", 
               getDescription()->getName().getString(), params); 
        return; 
    } 
 
    FoCourierDesc* courier; 
    FoDescription* obj = getChild(getPartnerName(), 
                                  depth, fixture_name, courier); 
    if (!obj) 
      return; 
 
    FoZYVEXManipulatorDesc* manipulator = (FoZYVEXManipulatorDesc*) getDescrip-
tion(); 
    FoDescription* gripper=manipulator->carriage.getValue(); 
    if (!gripper) { 
        printf("%s: EEK no carriage for ZYVEX manipulator!", 
               getDescription()->getName().getString()); 
        return; 
    } 
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    obj->transferReference(gripper); 
 
    unblock(); 
} 
  
// action for the "drop" action tag 
// drop depth  
// Transfer the reference of the object on the endeffector to the object 
// at depth from the motor of the partnered courier  
void FoProgZYVEXManipulatorInterface::drop(const char* params) 
{ 
    int depth; 
 
    printf("ZYVEX drop %s\n", params); 
 
    if (!getDescription()->isOfType(FoManipulatorDesc::getClassTypeId())) { 
        printf("%s: Programmed manipulator not owned by a manipulator\n", 
               getDescription()->getName().getString()); 
        return; 
    } 
 
    char fixture_name[100]; 
    if (sscanf(params, "%d %s", &depth, &fixture_name[0]) != 2) { 
        printf("%s: Progammed manipulator syntax error on '%s'\n", 
               getDescription()->getName().getString(), params); 
        return; 
    } 
 
    FoCourierDesc* courier; 
    FoDescription* obj = getChild(getPartnerName(), 
                                  depth, fixture_name, courier); 
    if (!obj) 
      return; 
 
    FoZYVEXManipulatorDesc* manipulator = (FoZYVEXManipulatorDesc*) getDescrip-
tion(); 
    FoDescription* gripper=manipulator->carriage.getValue(); 
    if (!gripper) { 
        printf("%s: EEK no carriage for ZYVEX manipulator!", 
               getDescription()->getName().getString()); 
        return; 
    } 
 
    int index = gripper->numChildren()-1; 
    if (gripper->getChild(index)) 
        gripper->getChild(index)->transferReference(obj); 
 
    unblock(); 
} 
 
///////////////////////////////////////////////////////////////////// 
static FoDescription* get_gripper(FoZYVEXManipulatorDesc* zmanip) 
{ 
    FoDescription* carriage = zmanip->carriage.getValue(); 
    if (!carriage) { 
        return zmanip->arc.getValue(); 
    } 
 
    FoDescriptionsField* grippers_field = 
        FO_GET_FIELD(carriage, "grippers", Descriptions); 
    if (!grippers_field) 
         return NULL; 
    FbList<FoDescription*>* grippers = grippers_field->getValue(); 
    if (!grippers || !grippers->numElems()) 
         return NULL; 
    return (*grippers)[0]; 
} 
 
static FbBool get_gripper_point(FoZYVEXManipulatorDesc* zmanip, FbVec3f& point) 
{ 
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    FoDescription* carriage = zmanip->carriage.getValue(); 
    FoDescription* link = zmanip->arc.getValue(); 
    if (!link) 
        return FALSE; 
    FoCargoMountPointField* mount_field =  
        FO_GET_FIELD(link, "mount", CargoMountPoint); 
    FbVec3f link_mount = mount_field->getValue().point; 
    if (!mount_field) 
        return FALSE; 
    if (!carriage) { 
        point = mount_field->getValue().point; 
        return TRUE; 
    } 
 
    FoDescriptionsField* grippers_field = 
        FO_GET_FIELD(carriage, "grippers", Descriptions); 
    if (!grippers_field) 
        return FALSE; 
    FbList<FoDescription*>* grippers = grippers_field->getValue(); 
        return FALSE; 
    FoDescription* gripper = (*grippers)[0]; 
    if (!gripper) 
        return FALSE; 
    mount_field = FO_GET_FIELD(gripper, "mount", CargoMountPoint); 
    if (!mount_field) 
        return FALSE; 
    point = mount_field->getValue().point; 
    FbVec3f gripper_trans; 
    FbRotation rot; 
    gripper->getMatrix().setTransform(gripper_trans, rot); 
    point += gripper_trans; 
    point += link_mount; 
    return TRUE; 
} 

 

 

B.7 ProgZYVEXManipulator.py 
 
import progInterface 
from progManipulator import* 
 
def moveCarr(id, r, speed): 
    progInterface.send_action(id, 'moveCarr %f %f 1' % (r, speed)) 
    progInterface.block(id) 
 
def grasp(id, depth = 1, fixture = "None"): 
    progInterface.send_action(id, 'grasp %d %s' % (depth, fixture)) 
    progInterface.block(id) 
 
def drop(id, depth = 1, fixture = "None"): 
    progInterface.send_action(id, 'drop %d %s' % (depth, fixture)) 
    progInterface.block(id) 

 

 

B.8 zyvex.fac 
 
file base_frame.aaa { 
    children { 
        file lg_platen.aaa { 
            name P1 
            matrix [ 1 0 0 0 0 1 -3.3304e-16 0 0 3.33081e-16 1 0 0 0 570 1 ] 
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        } 
        file bridge.aaa { 
            matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 0 -0.0140262 920 1 ] 
            member crossbar { 
                children { 
 
######################### Manipulator ######################## 
 
                    file test_manip.aaa { 
                        name M1 
                        matrix [ -0.99995 1.01418e-15 2.51476e-13 0 -2.36965e-16 -
0.99995 4.25452e-17 0 -2.45819e-13 -2.22741e-12 1 0 -24.9795 -39.999 -4.76879e-07 1 
] 
                        program {from progZYVEXManipulator import* 
m=['mi_1', 'mi_2', 'mi_3', 'mi_4', 'mi_5', 'mi_6', 'mi_7', 'mi_8', 'mi_9', 'mi_10', 
'mi_11', 'mi_12', 'mi_13', 'mi_14', 'mi_15', 'mi_16','mi_17', 'mi_18', 'mi_19', 
'mi_20', 'mi_21', 'mi_22', 'mi_23', 'mi_24', 'mi_25', 'mi_26', 'mi_27', 'mi_28', 
'mi_29', 'mi_30', 'mi_31', 'mi_32'] 
s=['so_1', 'so_2', 'so_3', 'so_4', 'so_5', 'so_6', 'so_7', 'so_8', 'so_9', 'so_10', 
'so_11', 'so_12', 'so_13', 'so_14', 'so_15', 'so_16', 'so_17', 'so_18', 'so_19', 
'so_20', 'so_21', 'so_22', 'so_23', 'so_24', 'so_25', 'so_26', 'so_27', 'so_28', 
'so_29', 'so_30', 'so_31', 'so_32'] 
j=10 
#while 1: 
 
for i in range(32): 
 
 if (i>=0 and i<10) or (i>19 and i<30) or (i>40 and i<50) or (i>60 and i<70) or 
(i>80 and i<90): 
  acceptRendevous(self, "C1_M1") 
  moveCarr(self,0.78535,1) 
  coordMoveTo(self,0, -0.780 ,0 , 2.5, 0, 0.5, m[i]) 
  coordMoveTo(self,0, -0.780, 0, 1.15, 0, 0.01, m[i]) 
  coordMoveTo(self,0, -0.780, 0, 1.5, 0, 0.01, m[i]) 
  coordMoveTo(self,0, 0, 0, 1.5, 0, 0.01, m[i]) 
  coordMoveTo(self,0, 0, 0, 1.15, 0, 0.01, m[i]) 
  grasp(self, 0, m[i]) 
  coordMoveTo(self,0, 0, 0, 1.15, 0, 0.01, m[i]) 
  coordMoveTo(self,0, 0, 0, 2.5, 0, 0.5, m[i]) 
  movePartnerTo(self,"C1",-250,-400,1) 
  moveCarr(self, -0.78535, 0.5) 
  finishRendevous(self) 
 
 else: 
  acceptRendevous(self, "C1_M1") 
  moveCarr(self,0.78535,1) 
  moveTo(self, 20, 3.14159) 
  coordMoveTo(self,0, 0.780 ,0 , 2.5, 3.14159, 0.5, m[i]) 
  coordMoveTo(self,0, 0.780, 0, 1.15, 3.14159, 0.01, m[i]) 
  coordMoveTo(self,0, 0.780, 0, 1.5, 3.14159, 0.01, m[i]) 
  coordMoveTo(self,0, 0, 0, 1.5, 3.14159, 0.01, m[i]) 
  coordMoveTo(self,0, 0, 0, 1.15, 3.14159, 0.01, m[i]) 
  grasp(self, 0, m[i]) 
  coordMoveTo(self,0, 0, 0, 1.15, 3.14159, 0.01, m[i]) 
  coordMoveTo(self,0, 0, 0, 2.5, 3.14159, 0.5, m[i]) 
  movePartnerTo(self,"C1",-250,-400,1) 
  moveCarr(self, -0.78535, 0.5) 
  finishRendevous(self) 
  
 if i>15: 
  acceptRendevous(self, "C2_M1") 
  moveTo(self, 20, -1.5707, 1) 
  coordMoveTo(self,0, 0, 0, 2.5, -1.5707, 0.5, s[i]) 
  coordMoveTo(self,0, 0, 0.158, 1.52, -1.5707, 0.01, s[i])  
  drop(self, 0, s[i]) 
  coordMoveTo(self,0, 0, 0.158, 1.52, -1.5707, 0.01, s[i]) 
  coordMoveTo(self,0, 0, 0.158, 1.2, -1.5707, 0.01, s[i]) 
  coordMoveTo(self,0, 0, 0.3, 1.2, -1.5707, 0.01, s[i]) 
  coordMoveTo(self,0, 0, 0.3, 2.5, -1.5707, 0.5, s[i]) 
  movePartnerTo(self,"C2",-250,400,1) 
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  moveTo(self, 20, 0, 1) 
  finishRendevous(self) 
 
 else: 
  acceptRendevous(self, "C2_M1") 
  #moveTo(self, 20, 0 1) 
  coordMoveTo(self,0, 0, 0, 2.5, 0, 0.5, s[i]) 
  coordMoveTo(self,0, -0.158, 0, 1.52, 0, 0.01, s[i]) 
  drop(self, 0, s[i]) 
  coordMoveTo(self,0, -0.158, 0, 1.52, 0, 0.01, s[i]) 
  coordMoveTo(self,0, -0.158, 0, 1.2, 0, 0.01, s[i]) 
  coordMoveTo(self,0, -0.3, 0, 1.2, 0, 0.01, s[i]) 
  coordMoveTo(self,0, -0.3, 0, 2.5, 0, 0.5, s[i]) 
  movePartnerTo(self,"C2",-250,400,1) 
  moveTo(self, 20, 0, 1) 
  finishRendevous(self) 
  
 
} 
                        member effectorLink { 
                            children { 
                            } 
                        } 
                        member base { 
                            matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 100 1 ] 
                        } 
                        member carriage { 
                            matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 0 100.581 -78.9458 1 ] 
                        } 
                    } 
                } 
            } 
        } 
 
######################## Courier 1 ####################### 
 
        file zyvex_courier_1.aaa { 
            name C1 
            matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 450 0.120276 655 1 ] 
            program {from progCourier import* 
 
while 1: 
 initiateRendevous(self,"M1","C1_M1") 
 reserve(self,"M1") 
 performRendevous(self) 
 endRendevous(self) 
 unreserve(self,"M1") 
} 
            member home { 
                matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 -450 -0.120276 15 1 ] 
            } 
            member motor { 
                matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 202.016 -466.439 0 1 ] 
            } 
        } 
 
######################## Courier 2 ####################### 
 
        file zyvex_courier_2.aaa { 
            name C2 
            matrix [ -0.999998 8.6625e-07 -1.99703e-15 0 -1.0664e-07 -0.999998 
2.43866e-07 0 3.79626e-07 1.86594e-07 0.999998 0 -450 -2.99364 655 1 ] 
            program {from progCourier import* 
while 1: 
 initiateRendevous(self,"M1","C2_M1") 
 reserve(self,"M1") 
 performRendevous(self) 
 endRendevous(self) 
 unreserve(self,"M1") 
} 
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            member home { 
                matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 -450.001 -2.99405 14.9998 1 ] 
            } 
            member motor { 
                matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 203.876 468.695 0.000125885 1 ] 
            } 
        } 
    } 
} 
file outercornercurb.aaa { 
    matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 -300 596.5 577.25 1 ] 
} 
file outercornercurb.aaa { 
    matrix [ 1.84613e-11 -1 -3.1916e-15 0 1 -4.10281e-10 -1.16662e-07 0 1.16662e-07 
-8.34593e-11 1 0 297 600 577.25 1 ] 
} 
file outercornercurb.aaa { 
    matrix [ 1.47346e-07 1 2.13361e-15 0 -1 1.29278e-07 3.32102e-08 0 3.32102e-08 -
1.38687e-14 1 0 -297 -600 577.25 1 ] 
} 
file outercornercurb.aaa { 
    matrix [ -1 -3.79424e-09 -5.32004e-16 0 -2.4597e-09 -1 -5.46555e-15 0 1.47104e-
16 1.52341e-15 1 0 300 -596.5 577.25 1 ] 
} 
file shortcurb.aaa { 
    matrix [ -1 -9.83008e-09 1.57065e-10 0 -3.01328e-10 -1 3.89389e-15 0 -2.28295e-
10 -6.9526e-12 1 0 -4.78195e-06 603.5 577.25 1 ] 
} 
file shortcurb.aaa { 
    matrix [ 1 0 0 0 0 1 0 0 0 0 1 0 0 -603.5 577.25 1 ] 
} 
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